UNCLASSIFIED

AD NUMBER

ADB381215

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; NAY
2012. O her requests shall be referred to Air
Force Research Laboratory, ATTN. AFRL/ RYWC,

Wi ght-Patterson AFB, OH 45433-7334. This
docunent contains export-controlled technical
dat a.

AUTHORITY

AFRL nenpo dtd 21 Mar 2013

THISPAGE ISUNCLASSIFIED

AFRL-RY-WP-TR-2012-0111, V2

SUPPORT (EISTS)

Task Order 0006: Vulnerability Path Analysis and Demonstration
(VPAD) Volume 2 —White Box Definitions of Software Fault Patterns

Ben A. Calloni, Ph.D., P.E., Djenana Campara, and Nikolai Mansourov, Ph.D.

Lockheed Martin Corporation and KDM Analytics Inc.

DECEMBER 2011
Final Report

Distribution authorized to U.S. Government Agencies and their contractors; Critical
Technology; May 2012. Other requests for this document shall be referred to
AFRL/RYWC, Wright-Patterson Air Force Base, OH 45433-7334.

WARNING - This document contains technical data whose export is restricted by the
Arms Export Control Act (Title 22, U.S.C., Sec. 2751, et seq.) or the Export
Administration Act of 1979, as amended, Title 50, U.S.C., App. 2401, et seq. Violations
of these export laws are subject to severe criminal penalties. Disseminate in
accordance with the provisions of DoD Directive 5230.25. (Include this statement with
any reproduced portions.)

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of
contents or reconstruction of the document.

See additional restrictions described on inside pages

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Uslng Government dmwings, specifications, or other data included in this document for any purpose
ather than Goverpment procurement does not in any way obligate the U.S. Government. The fict
that the Government formulated of supplied the dtawingg, specifications, or othet data does not
licenss the bolder or any other penson of SOIPOTHLOD; of CONVEY ARy Tights of permigsion to
manufscns, uss, or gell any patented inventian that may relgte fo them,

Qualified requestors may nhlmumpmn.nfﬂnsrupmﬁ'nmﬂuﬂafmmehmnulInfnmnhnn
nmmnm{tmfmm.mm

AFRL-RY-WP-TR-2012-0111, V2 HAS BEEN REYVIEWED AND I8 APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

mmuwmuimﬂwﬂcmmmmﬂm
publication does nof constitmte the Government” s approval or disapproyal of its ideas or findingy.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)

3. DATES COVERED (From - To)
31 March 2009 — 30 November 2011

2. REPORT TYPE

December 2011 Final

N

. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

EMBEDDED INFORMATION SYSTEMS TECHNOLOGY SUPPORT (EISTS) F33615-02-D-4035-0006

5b. GRANT NUMBER

Delivery Order 0006: Vulnerability Path Analysis and Demonstration (VPAD)
5c. PROGRAM ELEMENT

NUMBER
78612F

Volume 2 — White Box Definitions of Software Fault Patterns

6. AUTHOR(S)

5d. PROJECT NUMBER

Ben A. Calloni, Ph.D., P.E., Djenana Campara, and Nikolai Mansourov, Ph.D. 4035

5e. TASK NUMBER

00

5f. WORK UNIT NUMBER
40350006

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
KDM Analytics Inc. REPORT NUMBER
3730 Richmond Rd, Suite 204

Ottawa, ON K2H 5B9

Lockheed Martin Corporation
P.O. Box 748
Fort Worth, TX 76101

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

Office of the Assistant Secretary of Defense AFRL/RYWC

Air Force Research Laboratory

Sensors Directorate

Wright-Patterson Air Force Base, OH
45433-7320

(NII)/DoD CIO
6000 Defense Pentagon Ste 3d1048
Washington, DC 20301-6000

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-RY-WP-TR-2012-0111,

Air Force Materiel Command

United States Air Force V2

12.

DISTRIBUTION/AVAILABILITY STATEMENT
Distribution authorized to U.S. Government Agencies and their contractors; Critical Technology; May 2012. Refer other requests for
this document to AFRL/RYWC, Wright-Patterson Air Force Base, OH 45433-7320. This report is the second of two volumes.

13.

SUPPLEMENTARY NOTES
Export control restrictions apply. Report contains color.

14.

ABSTRACT

AFRL"s Embedded Information Systems Technology Support (EISTS) contract vehicle was used to support the Vulnerability Path
Analysis and Demonstration (VPAD) project sponsored by the Office of the Assistant Secretary of Defense (OASD) for Network and
Information Integration (NII) - Department of Defense (DoD) Chief Information Officer (CIO), supporting the Globalization Task
Force (Information Assurance).

In this effort, LM Aero and KDM Analytics were tasked to support OASD in providing continued research in the area of Software
Assurance (SwA) and to further work toward the development of SWA Ecosystem based on Object Management Group (OMG)
standards. Focus of this effort was to advance semantic formalisms of Software Fault Patterns (weaknesses) and to create a Test
Case Generator (TCG) capable of automatically generate various programming language test cases of fault code constructs. Such
constructs could then serve as test cases to test the effectiveness of various static code analysis tools, thus providing enhanced tooling
to reduce software vulnerabilities. This volume focuses on the Software Fault Pattern work performed by KDM Analytics.

15.

SUBJECT TERMS
OMG SwA Ecosystem, software assurance, software vulnerabilities, software fault patterns, static analysis, common weakness

enumeration, CWE formalization, vulnerability path analysis, code complexity taxonomy

16. SECURITY CLASSIFICATION OF: 17.LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON (Monitor)
OF ABSTRACT: OF PAGES
a. REPORT | b. ABSTRACT | c. THIS PAGE Jahn A. Luke
Unclassified | Unclassified | Unclassified SAR 176 19b. TELEPHONE NUMBER (Include Area Code)
(937) 528-8033

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Table of Contents

Section Page
LSt OF FIGUIS ..ttt et ettt sttt e e eesaeenbaeeneeenseennns v
LSt OF TADLES ..ttt et v
Section 1. SUMMATY ... ettt ettt e e saee e e sneeenseas 1
I.1 Statement Of WOTK........ooiuiiiiiii et 1
1.1.1 Naming Change from WK to SFPccooviiiiiiiieeeeeee, 2
1.2 INEOAUCTION ..ottt et sttt et et e s ens 2
1.3 The SyStems CONEXL.....ccueeiiieiieeiieiieeiieeieeeteesteesteeteeeteesseesbeestaeebeesssesnseesnseans 3
1.4 Software Fault Patterncoooiiiiiiiiii e 4
1.5 Discernible and Non-Discernable Characteristics..........cooveverrverieneenienieneeriennns 9
Section 2. Obtaining White Box Definitionsccccveeviieeiiieeiiieeie e 11
2.1 Bottom-Up: Cluster DiSCOVEry Processccecveriieriieniieiiienieeiieeie e 11
2.2 Top-Down: Software Fault Pattern Discovery Process..........ccccceeveeriiienieniennnen. 12
2.2.1 Parameterization of Software Fault Patterns..........ccccoeceeveeienenennennenne. 13
2.3 A Quick Summary of Software Fault Pattern Extraction Process............cc.......... 15
Section 3. Summary of Clusters and Software Fault Patternsc.cccceevveeiienenne. 17
Section 4. Clusters and Software Fault Patternsccooceeiieiiiiiiiniiiieceeee 22
4.1 Primary Cluster: Risky ValUuesccooviieiiiiiiiiiiiiiicecccece e 22
4.1.1 Secondary Cluster: Glitch in Computation............ccoeeeeviienienienieenene 23
4.2 Primary Cluster: Unused Entitiescccoeviieiieiiiiiiieiiecieeiiece e 29
4.2.1 Secondary Cluster: Unused Entities.........cccevveeiieniiiiieniieienieeeee 30
4.3 Primary CIuSter: APL......c.ooooiiiiiiiiiieiieee et 31
43.1 Secondary Cluster: Use of an Improper API ... 31
4.4 Primary Cluster: Exception Managementcccceevuveeieeniienieenieenieeneeseeennens 34
44.1 Secondary Cluster: Unchecked Status Conditioncc.cceceeveevierieneennen. 35
4.4.2 Secondary Cluster: Ambiguous Exception Type.......ccceeevievienieeiniennnnnne. 38
443 Secondary Cluster: Incorrect exception Behaviorc..cccceeeevinicnennnen. 39
4.5 Primary Cluster: MemOTY ACCESScceevvieruieeiieriieeieeieeeeeeieesseeseessseeseessseesees 40
4.5.1 Secondary Cluster: Faulty Pointer USe..........coceeeriiniiiiinicnieicnieneeen, 41
4.5.2 Secondary Cluster: Faulty Buffer ACCesscccoovvvvviienieniieiieiieeeee, 42
453 Secondary Cluster: Faulty String EXpansionc..ccocceevevieniincnicnennen. 45
454 Secondary Cluster: Incorrect Buffer Length Computation....................... 45
4.5.5 Secondary Cluster: Improper NULL Termination...........cccceeeevuereeneennen. 46
4.6 Primary Cluster: Memory Management............ccceeeveerueeerieenieenieenreenneeneeneneennens 47
4.6.1 Secondary Cluster: Faulty Memory Release.........c.cccoceeveniiniincncnennnen. 48
4.7 Primary Cluster: Resource Management............c.cccveeeueeeieeriienieenieeeieeieesne e 49
4.7.1 Secondary Cluster: Unrestricted Consumption............ceceeeeveevieneeneennen. 50
4.7.2 Secondary Cluster: Failure to release resource.........ccceeevveercveeerveeeenveennne. 51
4.7.3 Secondary Cluster: Faulty Resource Use.........cccceviiiiiieniienieniicie, 52
4.7.4 Secondary Cluster: Life CyCleoovviiiiiiieiiieeiieeeeeeeee e 53
4.8 Primary Cluster: Path Resolutioncccccoeviiiiiiiiiiiiie e 53
4.8.1 Secondary Cluster: Path Traversal..........ccccoocvieiiiiiiiiiciee e, 54
4.8.2 Secondary Cluster: Failed Chroot Jailcccocciiiiiiniiiiiiiiiee 61
483 Secondary Cluster: Link in Resource Name Resolution............c..cc.......... 62

i

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.9 Primary Cluster: Synchronizationccceecueerieeniiiiienieeiiesee e 64

4.9.1 Secondary Cluster: Missing LocK.........cccovveiiiiiiiiiniieciece e 65
4.9.2 Secondary Cluster: Race Condition Windowcccoeeiieviienieeniennnnnne. 67
493 Secondary Cluster: Multiple Locks/Unlocksccceevvveeviieeniieeeieenne, 69
494 Secondary Cluster: Unrestricted LOcKcccoeviiiiiiiiiniiiiiecieeiee 70
4.10 Primary Cluster: Information Leakccccoeviiiiiiiiiieiiiecieeceecee e 71
4.10.1 Secondary Cluster Exposed Data...........c.cccceviiiiiiiiiieniiiiieieececeeeiene 72
4.10.2 Secondary Cluster: State DisCloSUTI€..........ccocuieeiiiieeciiiieiieeeeeeeee e 83
4.10.3 Secondary Cluster: Exposure Through Temporary filesc.c......... 84
4.10.4 Secondary Cluster: Other EXpOSUrescccccuveevveeeciiieniiieesiie e 85
4.10.5 Secondary Cluster: Insecure Session Managementccoeeveereveennenn. 86
4.11 Primary Cluster: Tainted INPUL..........ccooviiieiiiiiiieceeeeeee e 86
4.11.1 Secondary Cluster: Tainted Input to Command..............ccccoevvrerrienrrennnn. 88
4.11.2 Secondary Cluster: Tainted Input to Variableccccceeoeeriieniienennnn. 103
4.11.3 Secondary Cluster: Composite Tainted Input...........cccceevvreiienieeneennen. 104
4.11.4 Secondary Cluster: Faulty input Transformation..............cccccceevveeeeenee. 105
4.11.5 Secondary Cluster: Incorrect Input Handlingcccooevvevienirenennn. 106
4.11.6 Secondary Cluster: Tainted Input to Environmentccccceceennennene. 108
4.12 Primary Cluster: Entry POINES.......c.ccociiiiiiiiiiieiiieieccee e 110
4.12.1 Secondary Cluster: Unexpected Access Points..........cccceeeeeiienieeennee. 110
4.13 Primary Cluster: AUthentiCation...........cccveevieriierieeniieeiieriie et e sve e 112
4.13.1 Secondary Cluster: Authentication Bypass.........ccccecueeviieiiiiiienieeicenen. 113
4.13.2 Secondary Cluster: Faulty Endpoint Authenticationcccoeeuneenee.. 115
4.13.3 Secondary Cluster: Missing Endpoint Authentication................ccccc...... 116
4.13.4 Secondary Cluster: Digital Certificate...........ccceeeverviieviieniiiiieeieeieeee. 117
4.13.5 Secondary Cluster: Missing Authenticationcecceeeeeveevienienennnene. 118
4.13.6 Secondary Cluster: Insecure Authentication Policyc.ccccevvrennennnee. 119
4.13.7 Secondary Cluster: Multiple binds to the Same Port...........c...coceeenee. 119
4.13.8 Secondary Cluster: Hardcoded Sensitive Datacccccccvveevienieenneenen. 120
4.13.9 Secondary Cluster: Unrestricted Authenticationc.ccccceeceerienicnnnene 121
4.14 Primary Cluster: Access CONIOL.........ccoiiviieiieeiiieiieeieeiie et 122
4.14.1 Secondary Cluster: Insecure Resource ACCessceceerervuerienienuennnene 123
4.14.2 Secondary Cluster: Insecure Resource Permissionscccccveeuveenne.. 124
4.143 Secondary Cluster: Access Management...........cccoeeeeveereeneneeneenennens 125
4.15 Primary CIuster: Privilegecceeviiiiiiiiiiieiieie ettt 126
4.15.1 Secondary Cluster: Privile@e........cccccoveeviriiniiiiiiiiniiiicnececceecee 126
4.16 Primary Cluster: Channelcc.ccociiiiiiiierieeieeeeeeee e 128
4.16.1 Secondary Cluster: Channel Attack........c..ccocoeviiiininiiniiniiice 129
4.16.2 Secondary Cluster: Protocol E1ror.........cccceeviiiiiiiiniiiiciecieeee e 130
4.17 Primary Cluster: Cryptographyccccoeoeeeiiieiieiiieiie ettt 130
4.17.1 Secondary Cluster: Broken Cryptographyccccceeevieviieiniiieeniieeienns 131
4.17.2 Secondary Cluster: Weak Cryptographyccccevviieiiieniiiiienieceeee, 132
4.18 Primary Cluster: MalWarec.cccccuveeiiieeiiie e 132
4.18.1 Secondary Cluster: Malicious Code...........c.ceourriiienireiiienieeiieeieeieeee, 133
4.18.2 Secondary Cluster: Covert Channel............ccccoovvieeiiieniieiniieeciee e 134
4.19 Primary Cluster: Predictabilityccoooiiiiiiiiiiiieieieeeee e 134
il

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.19.1 Secondary Cluster: Predictabilityccccceviiiiiiiniiiiiieiieeieieeeeee, 135

4.20 Primary CIUster: Ulcoooiiiieiieeeeee et 136
4.20.1 Secondary Cluster: FEatureccoevirriieiiienieeiiecie e 137
4.20.2 Secondary Cluster: Information LOSSccccveeeviieeiiieriiiiiie e 137
4.20.3 Secondary CIUStEr: SECUTIILY.....cecevvierieriieiieeieeieeeieeiee et eee e 138

4.21 Primary CIUSter: Otherccoeeviuiiiiiiieeiiee et 138
4.21.1 Secondary Cluster: ArChiteCturecccueervierieeiiienieeieeriie e 139
4.21.2 Secondary Cluster: DeSIZN........ccccueeiiiieiiieeiiieeiieeecie et eereeeeree e 140
4.21.3 Secondary Cluster: Implementation.............cccceeevierieerieenieeiiienie e 143
4.21.4 Secondary Cluster: COmMPIler........ccooiiiiiiieeiiieeiieeeeee e 144

APPENDIX A: Software Fault Patternscccoooveviriiiienieienieseccecee e 145

APPENDIX B: Software Fault Patterns and Corresponding Impactscccccccvveenenen. 164

List of Acronyms, Abbreviations, and Symbols...........cccooiveiiiiniiiiiiiniicie e, 168
il

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

List of Figures

Figure Page
Figure 1. Weakness Conceptual Modelcooviiiiiiniiiiiiiieiiiceee e 6
Figure 2. Weakness Logical Modelccooeiiiiiiiiiiiiiiccie e 7
Figure 3. Weakness Definition Separated From the Corresponding Computation 8
Figure 4. Classification of IMPACESc..eeeiuiiiiiiiiiiiiiecciie et 9
Figure 5. SFP Parameterization PrOCESSccveviieiiieeiieiieeieeeieeieeee e 14
List of Tables
Table Page
Table 1. Software Fault Pattern Extraction Process Steps........cccccvveveiieevciieiiieeeiieecieens 15
Table 2. Software Fault Clusters Summary Tablecccoociiiiiiniiiiiiiniieieieeee 18
Table 3. Input Commands Of TIC TYPE....ccueriiiiiiiiiieiiiiiee e 89
Table 4. Destination Commands of TIC TYPe.....ccccuveriiiiiiiniieiieiieeieee e 89
Table 5. Special Characters of TIC TYPe......cocuieriiiiiiiiiiiieie e 89
Table 6. CWEs in Relationship to Parameters of TIC Type........cccceevieniiiiiiiiiiiiene 91
Table 7. Example: Concrete Parameters for Parameterized TIC SFPccccooieenen 93
Table 8. Software Fault Patterns............ccooiiiiiiiiiiiiiii e 145
Table 9. Software Fault Patterns with Corresponding Impactsc.cccceeevverienirennnns 164
v

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Section 1. Summary

This effort is the result of Software Assurance (SwA) research performed by KDM
Analytics Inc as a supplier to Lockheed Martin Aeronautics Company under Contract
F33615-02-D-4035/0006, entitled “Vulnerability Path Analysis and Demonstration
(VPAD)” for the Office of the Assistant Secretary of Defense (OASD) for Network and
Information Integration (NII) - Department of Defense (DoD) Chief Information Officer
(CI0), Globalization Task Force (Information Assurance). This document provides a
catalog of White Box Definitions with defined parameters for Software Fault Patterns
(SFPs). The VPAD program is managed by the Air Force Research Laboratory (AFRL).

This document provides an overview of the process leading to the systematic
classification of software weaknesses that enables automation — the Software Fault
Pattern (SFP) approach, describes linkages to Common Weakness Enumerations
(CWEs), and the white box definitions for the parameterized Software Fault Patterns.

The SFP work for this project was divided in two phases: (a) Phase I which performed
the work outlined in contract Statement of Work (SOW) Requirements 3.1.1 and 3.1.3,
and (b) Phase 2 which performed the work as per SOW Requirement 3.1.5. The final
results, as the outcome of both phases are captured in this document and an
accompanying Excel spreadsheet document entitled “Phase II SFP Deliverable Final”,
which is available upon request.

1.1 Statement of Work

The following requirements were captured from the Supplier SOW from which the work
was performed:

“3.1.1 Identify and Develop White Box Definitions for Weakness Kernels”.

The Supplier shall identify and develop white box definitions for Weakness Kernels
(WKs), particularly those that can be used to define Common Weakness Enumerations
(CWE). In most cases, the identified WKs will be common to more than one CWE.
Once completed, these WK white box definitions will be ready for the formalization
process and at that point could be integrated into a standards-based tool analysis
approach, benefiting both real-time embedded and enterprise software assurance systems.
The Supplier shall document the analysis results and definitions in a technical report.

“3.1.3 Link the Weakness Kernels to their Corresponding CWEs”.

The Supplier shall identify the CWEs that employ the identified WKs, adjusting the WK
definitions as required.”

“3.1.5 Parameterize the remaining 31 Software Fault Patterns and Update the
Previous 19 Software Fault Patterns Documentation”.

During the process of extracting SFPs from CWE clusters, the Supplier (KDM Analytics)
noticed a specific SFP characteristic which when parameterized properly could lead to

1

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

the SFP becoming a Compliance Point. KDM Analytics parameterized 19 SFPs in a
previous effort. The same parameterization analysis will be performed across 31
remaining SFPs, and the earlier 19 will be updated as required.

1.1.1 Naming Change from WK to SFP

During the final Phase I review on 29 Sep 2009, it was agreed that the term “Software
Fault Patterns” would be used instead of “Weakness Kernel” which was referenced in the
SOW.

1.2 Introduction

One of the first steps in preventing cyber attacks is to collect and efficiently manage
knowledge about exploitable weaknesses in such a way that can be utilized by a
community to build more comprehensive prevention, detection and mitigation solutions.

Several classifications of vulnerabilities have been provided by the community; however
it has been observed that all existing classifications resist automation. The primary
objective of this document is to bring clarity and precision to the study of vulnerabilities
by describing a systematic catalog of weaknesses that enables automation — the Software
Fault Patterns.

The first step in this direction has been done: the input to the VPAD program is the
knowledge of the software weaknesses that is available as the Common Weakness
Enumeration (CWE) taxonomy. The VPAD program further organizes this knowledge
and makes it formal in order to deliver executable specifications for each exploitable
weakness, making the knowledge consistent and measurable. This is accomplished
through several transformations of knowledge captured informally as the CWE
taxonomy.
1. The first transformation normalizes weakness definitions in the form of patterns
and the corresponding pattern rules associated with white-box knowledge.

2. The second transformation extracts common patterns and associated conditions
(pattern rules) collectively referred to as Software Fault Patterns and redefines
existing weaknesses as specializations of the common patterns.

3. The third transformation is to redefine each Software Fault Pattern with focus on
invariant core and variation points as parameters. This way, weakness
specializations are represented by parameters in the corresponding Software Fault
Pattern.

4. The fourth transformation formalizes each Software Fault Pattern (SFP) using
Semantics of Business Vocabulary and Business Rules (SBVR) and Knowledge

2

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Discovery Metamodel (KDM), resulting in Structured English and XMI
representations of each weakness.

5. The final transformation is the conversion of each XMI into an executable Prolog
rule.

VPAD Phases I & II of the SFP work focused on transformations described above under
steps 1, 2 and 3. Due to limited funds, instead of performing steps 1 and 2 in the logical
order (which gives a better guarantee for the quality and comprehensiveness of the
common patterns and rules, resulting in natural clusters of weaknesses), a more
automated approach was used which constructed an approximated solution. The approach
to these first 2 steps of knowledge transformations is to perform step 2 first by using
automated semantic clustering technique to perform groupings of CWESs based on their
descriptions, and then performing manual examination of the resulting clusters, and then
subsequently extracting the SFPs. The reduction of the effort results from shifting the
manual effort from inspecting and normalizing individual CWEs to analyzing a much
smaller number of semantic clusters constructed automatically (some additional effort
was spent in managing the automated clustering process). Although this approximation
gave us large savings in time and effort, it is important to keep in mind that some
adjustments of the existing CWE definitions are required. The loss of quality in CWE
classification results from the fact that the CWE descriptions and other characteristics are
informal. This often leads to overlaps between the classes of faulty computations implied
by each CWE element. In order to develop a more systematic and automatable
classification, we re-examined and re-grouped the individual computations described by
the CWE elements while maintaining a uniform viewpoint — the patterns of the system
artifact that are indicators of the each computation.

1.3 The Systems Context

In general, a computation is a sequence of steps/events performed by the system or one of
the activities within the system. The computation is performed by the code, which is
supported by other components of the system. Code provides the constraints to
computations and therefore determines what computations can occur.

From the systems perspective, a system is a collection of activities that exchange
information to achieve some common purpose. Computations occur at System nodes that
are connected by channels. Following the NIST CVSS approach, we distinguish local
channels between system nodes deployed at the same machine; adjacent network
channels between system nodes deployed at the same local area network; and remote
channels. This distinction is important because it determines the class of access required
in order to exploit vulnerability. Each system node performs computation to provide
services to other system nodes or the environment of the entire system. Data interchanges
use channels. We distinguish between data at rest (for example, databases), data in
motion (data in the channel) and data in use (data flowing inside the computation).

3

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Certain steps are specific to the given system. However, there are certain sequences of
steps that are common to large families of systems. For example, such common
sequences are related to input processing, authentication, access control, cryptography,
information output, resource management, memory buffer management, exception
management. The catalog of faulty computations should focus at the computation that is
common to large families of systems; however it should scale well to enable
customization for a specific targeted assessment.

Vulnerability is defined as “a bug, flaw, weakness, or exposure of an application, system,
device, or service that could lead to a failure of confidentiality, integrity, or availability”
[source: NIST Interagency Report 7435, August 2007]. In other words, “vulnerability” is
a computation that can be exploited to produce (negative) impact. Certain computations
in the system are designed to mitigate the vulnerabilities. These computations and the
corresponding mechanisms and “places” in the code are called “safeguards”. A “faulty
computation” is defined as either a computation that has direct impact or a computation
corresponds to an incorrect safeguard.

A ““computation foot-hold” is a known construct, an entry point, or an API call
manifested in the systems artifacts, such that it is a necessary condition for the
computation. Certain places in the code can be utilized to directly cause (negative)
impact. Such places are foot-holds for the impacting computation sequences. Safeguards
(as computation sequences) also have foot-holds, related to the safeguard itself as well as
to the protected region. Software fault patterns are elements of the catalog of the unique
places in the code associated with faulty computations that directly have impact or to the
failed safeguards.

The Software fault pattern approach provides a catalog of the faulty computations, and
focuses on the “places” in the code, where there are indicators of particular
computations. In particular, the Software Fault Pattern approach focuses at the “foot-
holds” which are places in the code where there are the necessary conditions for
vulnerabilities. Therefore the Software Fault Pattern approach is driven by the patterns in
the code as they determine particular classes of faulty computations. This viewpoint is
constructive and systematic and therefore enables automation. Uniform viewpoint makes
the Software Fault Pattern approach systematic and repeatable.

1.4 Software Fault Pattern

The Software Fault Pattern (or SFP) is a common pattern with one or more associated
pattern rules (conditions) representing a family of faulty computations. The generalized
SFP definition refers to the entire secondary cluster and is arranged into invariant core
and variation points. To ensure full coverage, variation points are identified through top-
down view of entire cluster space. Once all variation points are identified they are
mapped to specific parameters. In other words, parameters introduce additional details for
the generalized definition, focusing at the variation points.

4

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

SFPs map to multiple CWEs in such a way that each CWE in the family can be defined
as a specialization of the SFP where specialization is defined by one or more SFP
parameters. Thus, CWEs serve as a reporting mechanism.

Identified Software Fault Pattern definitions will lead to the development of more
accurate testing tools and also improve developer education since it is easier to manage
the knowledge of fewer SFPs than hundreds of CWEs. They also provide for a more cost
effective formalization, since for each CWE, only the extension to a formalized SFP is
required.

In order to express SFPs as patterns and associated pattern rules that enable grouping by
specialization in a consistent, measurable and comparable way, we developed conceptual
and logical models that focus on essential characteristics expressed as:

e c¢lements
e relations between elements and
e rules describing relations

In accordance with the principles of the Model-Driven Architecture, the logical model is
the key artifact, where a multitude of physical models can be automatically derived from
it for selected implementation technologies.

A conceptual model of a software fault pattern is presented in Figure 1. The conceptual
model facilitates readable definitions of SFPs in structured English known as contractual
formalization. It removes any ambiguity from the SFP and separates white box
discernible from non discernible properties, although both could be retained in the SFP
definition. Each pattern has a start and an end statement connected by a path constrained
by particular conditions. The start statement determines the source of data while the end
statement determines the data sink and the weakness corresponds to any computation
between the start and end statements that propagates certain data properties that satisfy a
certain end-to-end data condition associated with the computation.

5

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

formalization

Example weakness]

input-and-has-an-end-statemen
nputis-part of-the-format-strng-

» Uncontrolled: Format-Stnng-is-a-weakness-where-the-code-path-has =-start-statement-thats
t e5-a-format-stnng-1o-a-format:stnng- function-w

16 -Emnat-stnng-::-mdeszmble |

Patterns
Pattern Rule
......................... Metamodel (fragment) . S
' i detérmines
! " p..* End Statement '
;' Condition " Weakness ;
i 1. |
rivEies © correpponds to Start Statement
roduces . . s
Property | itihbalelsiute U ,
determines
1..%
propagates Data Source
. between
Computation
Common to all 7
weakn esses; :
Determined by Data Sink
code complexities —
taxonomy
consumes

Figure 1. Weakness Conceptual Model

The logical model expands on the conceptual model to show how a pattern with a pattern
rule is presented in the code and what properties are taken in account when code path is
computed. The Logical Model adds concrete details to the definition of a “computation”
and a “property” in white-box terms. At this point, all non discernible white box
properties are removed. This is in preparation for technical formalization. The logical
model is presented in Figure 2. The Weakness Logical Model shows how the SFP pattern
is mapped onto both the Technical and Conceptual Formalizations.

6

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Example weakness
formalization

= Uncontrolled-Format-String+is-a-weakne sewhere the code path-has-a-start-ctatement-thabaccepls- |
CF input-and-has-an-end-statement-t s-a-format-stringto-a-format-stnng-function-wherethe-
input-is-part of-the+format-string: -format-strng-is-undesirable

f Struciural Rules
ValueRules & [Metamodel (fragment)]

7 —
— 0..* End Statement
Condition [Weakness
Data Flowy
L * ‘ 0..* ‘ f 0.7
catisfies | involves . Start Statement
TF] 1..
1..* 1.. satisfies
Value Range |"**| Property Control Flow
Code Path
1 resolves to det: rmines has
- Control Relation
Data Relation dotormines
t
° .= l to from
U * \J
from Data Element | Statement | __
> uses
Resource

Figure 2. Weakness Logical Model

These models facilitate a certain structure of the definition of each weakness and provide
a natural separation point between the definitions of a weakness from the apparatus
required to determine the corresponding computation. This is illustrated in Figure 3.
This is the key for using weakness definitions as the common content for the multitude of
weakness detection tools. The structure of the definition facilitates clustering based on
specialization which is essential for the process that creates a natural cluster of CWEs.

7

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Patterns
Pattern Rule

p..* Weakness End Statement

. Condition

Start Statement

Figure 3. Weakness Definition Separated From the Corresponding Computation

The Software Fault Pattern approach focuses at the “places” in the code that are
indicators of particular computations. In particular, the Software Fault Pattern approach
focuses at the “foot-holds” which are places in the code that present the necessary
conditions for vulnerabilities.

According to the Logical Weakness Model, each Software Fault Pattern is defined by a
pattern which is based on some tangible foot-holds in the system®s artifacts; and some
conditions, which involve the elements of the pattern as well as some property which is
also based on some tangible foot-holds in the systems artifacts.

Software Fault Patterns are arranged into common clusters that represent classes of
computations common to large families of systems. According to the above definitions,
these computations involve common safeguards, such as authentication, access control,
privilege management, cryptography and data validation, as well as the common
infrastructure activities, such as memory management, resource management, exception
management, information management, etc.; as well as several very specific patterns
where “things can go wrong”. Several computations are included into the catalog because
they are common “contributors” to the real faulty computations.

Software Fault Patterns are aligned with impact. According to the NIST Common
Vulnerability Scoring System (CVSS), impact consists of Confidentiality Impact,
Integrity Impact and Availability Impact.

Confidentiality Impact “measures the impact on confidentiality of a successfully
exploited vulnerability”. “Confidentiality refers to limiting information disclosure to only
authorized users, as well as preventing access by, or disclosure to, unauthorized users”.

Integrity impact “measures the impact on integrity of a successfully exploited
vulnerability”. “Integrity refers to the trustworthiness and guaranteed veracity of
information”. Integrity impact involves modification of some system files or information.

Availability impact “measures the impact -on availability of service at the time of
successfully exploited vulnerability”. “Availability refers to the accessibility of
information resources. Attacks that consume bandwidth, processor cycles, or disk space
all impact availability of the system.

8

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

These concepts are further elaborated in the system context and illustrated in Figure 4
below.

T

Impact
Confidentiality Integrity Availability
AR
Information Information Service Service Resource Information
/ Ty e RS
Data at rest Data at rest Distortion Shutdowrs Lotk /

Data at rest

Data in motion Data in motion :
Subyersion Data in motion
Data in use Data in use / \

Damage Lock

Code at rest Code in use

Figure 4. Classification of Impacts

1.5 Discernible and Non-Discernable Characteristics

Discernible characteristic is a property of the computation, such as the role of a data
element, the role of an action or of a region, which can be expressed as a statement in the
vocabulary of the system®s artifacts. Discernible description of a computation is a
(logical) statement that is based entirely on discernible characteristics. A non-discernible
description is either ambiguous (the meaning of the definition is ill-defined, the
description is not a logical statement), uses ill-defined characteristics, or uses one or more
non-discernible characteristics.

The Software Fault Pattern approach uses the ISO 19506 Knowledge Discovery
Metamodel (KDM) vocabulary as the baseline for the vocabulary of system®s artifacts.

A non-discernable description can be turned into a discernable one by:

o Providing more clarity and precision
o Using structured English based on controlled vocabulary

o Performing additional research to better define the corresponding family of
computations, and better defining the characteristics involved in the definition
9

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Defining additional facts that extend the currently available vocabulary of facts
related to system®s artifacts.

Some examples of non-discernable CWEs:

o 684 - Failure to Provide Specified Functionality - The code does not function
according to its published specifications, potentially leading to incorrect usage

o 573 - Failure to Follow Specification - The software fails to follow the
specifications for the implementation language, environment, framework,
protocol, or platform

o 115 — Misinterpreted Input - The software misinterprets an input, whether from an
attacker or another product, in a security-relevant fashion.

o 448 - Obsolete Feature in UI - A UI function is obsolete and the product does not
warn the user.

10

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Section 2. Obtaining White Box Definitions

A naive process for developing white-box definitions for SFPs will first identify white-
box definitions for each weakness following the structured definition approach based on
the Weakness Conceptual Model, and then analyze the already normalized definitions to
discover common patterns and rules and determine the clusters and SFPs as the result.
The disadvantage of this approach is that the input “knowledge space” is large and not
normalized. A more cost-effective approach will approximate the clusters first by using
automated semantic clustering tools to perform groupings of CWESs based on their
informal descriptions, and then perform manual examination of the resulting clusters, and
subsequently extract the SFPs. Once all the steps are completed, the white-box
definitions are produced.

In other words, a cost-effective process for developing white box definitions for SFPs
requires that the (informal) clusters first be identified. Once the clusters are identified,
the white box descriptions are created for each SFP by following the approach based on
the Weakness Conceptual Model.

On the other hand, the clusters need to be examined regardless of the CWE groupings
that lead to their creation. Each cluster has to be well-defined. Each cluster should focus
at a meaningful area of computations that are common to a large family of software
systems. Each cluster should be determined by unique computation foot-holds and unique
properties.

To achieve these objectives, we followed a two-phase process. The bottom-up phase of
the process is called the Cluster Discovery process. The outcome of the bottom-up phase
is collection of the initial families of related computations (clusters). The second phase is
the Software Fault Pattern Discovery process based on the initial clusters. During this
phase the clusters are rationalized and refactored, common patterns and their parameters
are identified, and then individual software fault patterns with their parameters are
described.

At the end of the top-down phase, software fault patterns are associated to the
corresponding impacts.

2.1 Bottom-Up: Cluster Discovery Process

The process starts with CWEs — as de-facto space definition. CWE is a description of the
“universe” of faulty computations; however the objectives of the CWE classification are
somewhat different than the systematic focus at enabling automation through tangible
patterns. In particular CWE has multiple places where classes overlap. Therefore one has
to go through all CWESs and “discover” the actual computations — the extent of the CWE
elements. In order to provide good coverage of the space, we considered all CWE
weakness nodes, regardless of their parent-child relationships.

CWE descriptions were “ranked” in the following way: enough white-box content to
proceed="“discernible”; not enough white-box content="non-discernible”. Then rough

11

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

identification of the common characteristics of the computations from informal CWE
description was performed.

Then a “distance” metric was applied to matching characteristics and initial clusters were
identified. Each CWE defines a family of computations. Cluster is also a (larger) family
of computations. The grouping criterion for the initial clusters is the commonality of
characteristics.

This material is used to manage the set of real known patterns of “faulty computations”.
Links to CWE elements are maintained in order to be able to reason about the coverage
of the space.

There are 638 CWE descriptions found in CWE Release 1.4. CWE Release 1.4 contains
777 elements, but not all of them are actual weakness descriptions. Some CWE elements
are designated as Views (22 elements), Categories (105 elements) and Compound
Elements (12 elements). Only “weakness” elements were considered during analysis.
Weakness elements are identified in the CWE 1.4 XML document as elements between
tags <Weaknesses> and </Weaknesses>.

Of the 638 “weakness” elements, eight are marked as depreciated, leaving 630 for
review.

In creating a SFP, the remaining actual CWE weakness descriptions are categorized by
their functionality, patterns and pattern rules to create CWE Clusters. Once the clusters
have been identified and refined, each CWE is examined and tagged as either:

e Suitable for formalization
e Unsuitable for formalization

For the CWEs deemed suitable for formalization, draft patterns are created. Each pattern
is validated by creating semi-formal white box descriptions by adding the “start” and
“end” statements as required.

After further analysis, the semi-formal descriptions are normalized, through terminology
and pattern alignment between descriptions.

2.2 Top-Down: Software Fault Pattern Discovery Process

The top down process involves examination of the initial clusters to identify and describe
family of computations. In other words, to discover Software Fault Patterns. CWEs are
no longer involved in the top down process, although the links to the individual CWEs
are maintained throughout the entire process. The objective of the top-down examination
of the initial clusters is the rationalization of clusters and systematic identification of the
boundaries of each family of faulty computations.

We built a full conceptual map of clusters as a step to normalized vocabulary. We
examined the key characteristics of each cluster and dependencies between clusters based
on these characteristics. The SFP approach is unique because it only considers

12

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

characteristics that are discernible in code artifacts, not design or system configuration
artifacts. We rationalize characteristics for each cluster and further rationalize the
clusters themselves.

A primary cluster is the normalized way to manage the reality of “faulty computations”.
A “computation” is considered as a sequence of steps (or events). The code artifacts
provide constraints to computations and therefore determine what kind of computations
can occur. Computations often perform steps that are common to large families of
systems. The key to the SFP approach is that there are certain “places” in the code
artifacts that are identifiable indicators of particular computations. Further, in those
certain places of code there exist the necessary conditions for vulnerabilities. These
places are called the “foot-holds” of vulnerabilities. We further refined the primary
clusters by examining the available foot-holds and created secondary clusters focused at
common foot-holds. The basis of the grouping provides the common detection.

Once the outline of the catalog of software fault patterns has been finalized, we identified
the individual software fault patterns. The next step is to further identify for each pattern
the invariant core characteristics and the variant characteristics. The variant
characteristics determine parameters. This step is called SFP parameterization and it is
described in section 2.2.1 Parameterization of Software Fault Patterns. Once the
parameterization step is performed, a generalized SFP white-box definition is developed
covering invariant core and its identified parameters. Parameters are provided with
sample values to illustrate their mappings to the system artifacts.

Traceability to CWEs is guaranteed through the bottom up phase. We defined the
boundaries of each family of computations. Each CWE is assigned to exactly one cluster.
In some situations this creates tension with the existing CWE descriptions.

At the end of this phase we aligned software fault patterns with vulnerability impacts.

2.2.1 Parameterization of Software Fault Patterns

Parameterization of SFPs is about creating a vocabulary of elementary “patterns” and
discernible characteristics of these patterns, focusing at the invariants of each pattern and
the variation points of each pattern. A similar process is well-known in geometry, where
the language of elementary patterns includes for example, a “straight line”, a “parabola”
and a “periodic line”. Using the appropriate parameters, many different lines are
instances of a “straight line” and there is no need for a special term for each of them.
Instead, a generic term “straight line” is used, defined by the equation y=ax+b, where
each individual line is additionally characterized by certain values of parameters “a” and
“b”. Also, the vocabulary of elementary patterns is used to define more complex patterns,
or composite lines. Thus the parameterized vocabulary of “patterns™ helps organize the
individual observations. It should be noted, that the current CWE dictionary is at this
point closer to a collection of observations than to a vocabulary of individual elementary
“patterns”. The SFP approach is aimed to mitigate this deficiency.

13

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Parameterization extends the 2-phase process described earlier. First, the individual
observations that are representatives of a common family of computations (also called a
cluster) are examined, and a generalized definition is provided. The generalized
definition refers to the entire cluster, focusing at its invariant and the variant points.
Further description of the variant points introduces additional details to the generalized
definition. Variations are identified top-down in order to provide assurance of the
coverage. In other words, large top-down variation groups are considered first, followed
by more specific groups. Additional characteristics describing variation families are
identified. Finally, parameters are mapped back to the original observations. Firstly, this
allows preserving the links to the original observations (CWEs). Secondly, this allows
identifying gaps in the original definitions. This process is illustrated in Figure 5 below.

1. Observations that
are

representatives of a
common family of
computations (aka

2. Generalized definition 3. generalized definition
refers to the entire
cluster (its invariant and

its variation points)
cluster

4. Parameterization 5. Variations are identified 6. Parameter;, are
introduces additional top-down in order to provide m‘?‘?pef' tkc:t €
details for the assurance of coverage original observations,

generalized definition,
focusing at the
variation points

and gaps are

variations
parameters

Figure 5. SFP Parameterization Process

14

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

2.3 A Quick Summary of Software Fault Pattern Extraction Process

Table 1 summarizes the tasks (in order) that were performed.

Table 1. Software Fault Pattern Extraction Process Steps

Task | Task performed Details

#

1 Each CWE weakness Analyzed CWEs have been entered into the
description has been spreadsheet accompanying this document. CWE
analyzed. version 1.5 has been analyzed. There are total 638

CWE weaknesses, including 8 marked as
deprecated.

2 | Each CWE weakness Ranks have been entered into the spreadsheet
description has been accompanying this document.
assigned a rank [1..5] e Rank 5 means “The content of this CWE
indicating the quality of weakness description is based directly on the
the white-box content in well-understood discernible white-box
the otigi'nal weakness properties”.
description e Rank 4 means “The content of this CWE

weakness description is based on discernible
white-box properties”.

e Rank 3 means “The content of this CWE
weakness description is based on discernible
white-box properties or properties that are
believed to be derivable from them”.

e Rank 2 means “The content of this CWE
weakness description involves properties that
are not derivable from discernible white-box
properties”.

e Rank 1 means “The content of this CWE
weakness description is not discernible”

3 | Meaningful groupings 21 primary clusters have been suggested. Primary
of CWE weaknesses clusters are based on the common functionality of

have been suggested

the corresponding computation and are to a large
extent correlated with the use of the common key
terminology, orthogonal between the clusters.

Primary clusters are further subdivided into 80
secondary clusters.

Cluster names have been entered into the

15

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

spreadsheet accompanying this document.

The document contains a short description of each
cluster

4 | Each cluster has been Description of each primary cluster includes the

given a short description | common characteristics of the cluster, associated
clusters, and descriptions of each secondary cluster.

5 Each CWE has been Each secondary cluster contains the list of individual
associated with exactly | CWEs in this cluster.
one pgmaryl antd Cluster names have been entered for each CWE into
secondatry cluster the spreadsheet accompanying this document.

6 | Software Fault Patterns | 36 Software Fault Patterns have been identified.
have been identified

7 | Each CWE with rank Only CWEs ranked as 3, 4 and 5 contribute and
5.4 or 3 (discernible maintain the link to Software Fault Patterns
CWESs) has been
associated with exactly
one Software Fault
Pattern

8 | Each Software Fault Software Fault Pattern follows the Weakness
Pattern has been given a | Logical Model and identifies the end and start
white-box content statement, the condition and the property.
description

9 | Software Fault Patterns | This step is to further identify for each pattern the
have been invariant core characteristics and the variant
parameterized characteristics. The variant characteristics determine

parameters.
10 | CWEs have been Software Fault Patterns identify certain elements as

represented as
specializations of the
corresponding Software
Fault Pattern

parameters. Individual CWEs can be represented as
specializations of a common software fault pattern
with specific values of Software Fault Pattern
parameters.

16

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Section 3. Summary of Clusters and Software Fault
Patterns

The rest of this document focuses on further analysis and revision of identified clusters
and their software fault patterns.
Summary:

The following table (Table 2) provides the summary of the Clusters and Software Fault
Patterns.

o Column 1 describes the Primary Cluster.

o Column 2 enumerates all secondary clusters of the given primary cluster (one per
row).

o Column 3 (# of CWEs) shows the number of CWEs in the secondary cluster.

o Column 4 (Primary CWE Totals) shows the total number of the CWEs for the
entire primary cluster.

o Column 5 (Pattern & Condition Available?) provides a brief description of the
secondary cluster: “yes” means that all CWEs in the secondary cluster are
discernible; “singular” means that the cluster contains a single discernible CWE;
“partial” means that there are some discernible and some non-discernible CWEs
in the cluster; “no” means that the cluster contains only non-discernible CWEs.

o Column 6 (WB CWE) shows the number of discernible CWEs in the cluster
(CWEs with white-box definitions)

o Column 7 (SFP #) provides the reference to the corresponding software fault
pattern.

17

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Table 2. Software Fault Clusters Summary Table

Software Fault Clusters

Primary Secondary # of Primary | Pattern & | White- | SFP #
CWEs CWE Condition | Box
Totals Available? | CWE
Risky Values 31
Glitch in computation 31 partial 27 SFP1
Unused entities 3
Unused entities 3 yes 3 SFP2
API 28
Use of an improper API 28 partial 20 SFP3
Exception 27
Management Unchecked status condition 17 partial 13 SFP4
Ambiguous exception type 2 yes 2 SFP5
Incorrect exception behavior 8 partial 3 SFP6
Memory Access 20
Faulty pointer use 3 yes 3 SFP7
Faulty buffer access 11 yes 11 SFP8
Faulty string expansion 2 yes 2 SFP9
Incorrect buffer length computation 3 partial 2 SFP10
Improper NULL termination 1 singular 1 SFP11
Memory 5
Management
Faulty memory release 5 yes 5 SFP12
Resource 17
Management Unrestricted consumption 4 partial 3 SFP13
Failure to release resource 7 yes 7 SFP14
Faulty resource use 2 yes 2 SFP15
Life cycle 4 no 0 -
Path Resolution 51
Path traversal 43 partial 38 SFP16
Failed chroot jail 1 singular 1 SFP17
Link in resource name resolution 7 partial 4 SFP18
Synchronization 22

18

Distribution authorized to U.S. Government Agencies and their contractors.

Data subject to restrictions on the cover and notice page.

Software Fault Clusters

Primary Secondary # of Primary | Pattern & | White- | SFP #
CWEs CWE Condition | Box
Totals Available? | CWE
Missing lock 13 partial 10 SFP19
Race condition window 5 partial 4 SFP20
Multiple locks/unlocks 3 yes 3 SFP21
Unrestricted lock 1 singular 1 SFP22
Information 96
Leak Exposed data 76 partial 38 SFP23
State disclosure 7 no 0 -
Exposure through temporary file 3 no 0 -
Other exposures 7 no 0 -
Insecure session management 3 no 0 -
Tainted Input 138
Tainted input to command 87 partial 68 SFP24
Tainted input to variable 8 yes 8 SFP25
Composite tainted input 0 no 0 SFP26
Faulty input transformation 15 no 0 -
Incorrect input handling 17 no 0 -
Tainted input to environment 11 partial 3 SFP27
Entry Points 11
Unexpected access points 11 yes 11 SFP28
Authentication 43
Authentication bypass 10 no 0 -
Faulty endpoint authentication 11 partial 6 SFP29
Missing endpoint authentication 2 yes 2 SFP30
Digital certificate 6 no 0 -
Missing authentication 2 yes 2 SFP31
Insecure authentication policy 6 no 0 -
Multiple binds to the same port 1 singular 1 SFP32
Hardcoded sensitive data 4 partial 2 SFP33
Unrestricted authentication 1 singular 1 SFP34
Access Control 16

19

Distribution authorized to U.S. Government Agencies and their contractors.

Data subject to restrictions on the cover and notice page.

Software Fault Clusters

Primary Secondary # of Primary | Pattern & | White- | SFP #
CWEs CWE Condition | Box
Totals Available? | CWE

Insecure resource access 4 partial 2 SFP35

Insecure resource permissions 7 no 0 -

Access management 5 no 0 -
Privilege 12

Privilege 12 partial 1 SFP36
Channel 13

Channel Attack 8 no 0 -

Protocol error 5 no 0 -
Cryptography 13

Broken cryptography 5 no 0 -

Weak cryptography 8 no 0 -
Malware 11

Malicious code 8 no 0 -

Covert channel 3 no 0 -
Predictability 15

Predictability 15 no 0 -
UI 14

Feature 7 no 0 -

Information loss 4 no 0 -

Security 3 no 0 -
Other 46

Architecture 11 no 0 -

Design 29 no 0 -

Implementation 5 no 0 -

Compiler 1 no 0 -

632 310 36

From the above table, it can be seen that 632 CWEs have been categorized. Since the
total deprecated CWEs are 8, then the total CWESs defined as weaknesses total 640.

20

Distribution authorized to U.S. Government Agencies and their contractors.

Data subject to restrictions on the cover and notice page.

In addition, there are:

o 21 Primary Clusters
o 62 Secondary Clusters
o 310 discernible CWEs

o 36 unique Software Fault Patterns identified.

21

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Section 4. Clusters and Software Fault Patterns

A “cluster” is a family of computations that share certain common characteristics.
Identifying vulnerability clusters is the first step towards identifying software fault
patterns. In particular, all software fault patterns are located within a certain cluster. A
two-level hierarchical organization of clusters is suggested. First there are 21 primary
clusters. Primary clusters are identified based on the common functionality of CWE:s.
Second, each primary cluster is further subdivided into one or more secondary clusters,
based on the common patterns. As the result, each CWE is associated with exactly one
primary and exactly one secondary cluster. This association does not depend on the
discernibility of the CWE.

Discernible CWEs in a secondary cluster contribute to a software fault pattern.

The following sub-sections describe 21 primary and 62 secondary clusters extracted by
examining 632 CWEs and their associated Software Fault Patterns.

4.1 Primary Cluster: Risky Values

This cluster of weaknesses relates to the basic uses of numeric values in software
systems. The characteristics of “Risky Values” involve:

o Creation of numeric values
o Operations involving numeric values
o Exceptions raised by numeric operations

Certain values are unexpected in certain contexts, while they are perfectly legitimate in
most other contexts. These are situations like the use of an uninitialized value or division
by zero. These usages may have impact and raise exceptions on some platforms. Also
faulty (unexpected) numeric values may be generated as the result of certain numeric
operations, like type cast or arithmetic. These situations do not have explicit impact.
However, faulty values may flow into the following contexts:

o Buffer access operations
o Simple conditions
o Loop conditions

Through these characteristics, the Risky Values cluster is associated with the following
clusters:

o Memory Access
o Exception Management

22

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o API
o Clusters that involve conditions
o Authentication
o Access Control
o Privilege
o Synchronization
o Resource Management

This cluster contains 31 CWEs. 27 of these CWEs are all based on discernible properties
and are therefore covered by a software fault pattern.

The Risky Values cluster has a single secondary cluster ,Glitch in computation™.

4.1.1 Secondary Cluster: Glitch in Computation

This cluster describes a large family of computations that violate naive assumptions about
the resulting data. Each computation involves an identifiable operation that processes the
input data of certain datatypes (integer, Boolean, etc.) and produces a certain resulting
value. Under certain conditions involving the input data, the resulting value takes an
anomalous value, which can violate naive assumptions. The particular glitch (or the
anomalous resulting value) may be described, for example as an overflow, an underflow,
loss of significant digits, exception, etc. One can say, that certain input data, satisfying
the glitch conditions, is inappropriate for the given operation. The impact of the glitch in
computation is the potential loss of integrity of the data in use or the loss of the
availability of the corresponding service.

However, a more common situation is that the anomalous data is propagated into another
more security sensitive context and causes more serious injury. For example, the
incorrect data can be used downstream as the length of a buffer or as the length of data in
a buffer allocation operation or in a buffer access operation, or it can be used as a throttle
value in resource allocation loop, etc. The anomalous resulting value may also cause
unchecked exception.

The “Glitch in computation® cluster is further subdivided into the following 9 groups for
easier understanding and management:

a. Wrap around error — this group covers unconstrained numeric operations where
the data value can be proven to exceed the boundary value of the corresponding
datatype.

b. Unsafe type conversion — this group covers type conversion operations where the
data value can be proven to change unexpectedly

23

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

c. Incorrect pointer scaling — this group contains a very specific operation involving
a combination of pointer arithmetic a type conversion, which is known to
correlate with field issues.

d. Use of an Uninitialized value — this group covers a unique scenario where an
“uninitialized” data value is used

e. Divide by zero — this group covers a unique scenario where a value 0 is used as a
divisor of the divide operation

f. Suspicious condition — this group covers suspicious conditions that always select
a single branch, or may involve incorrect assignments or may not account for
short circuit condition logic

g. Incorrect operations on non-serializable objects — this group covers several related
faulty computations involving non-serialized objects

h. Incorrect parameters to an API — this group covers common weaknesses related to
parameter passing to and from an API call

i. Faulty pointer creation — this group is closely related to faulty pointer use, but
focuses at the scenarios where faulty pointers are usually created (rather than the
places where they are used)

4.1.1.1 SFP1 Glitch in Computation

Software Fault Pattern — a weakness where the code path has all of the following:

o End statement that performs an identifiable operation on data producing some
actual value of a datatype and

o The data is inappropriate to the operation resulting in the value that is unexpected
for the datatype and the operation

The parameters of this family of computation include the variation of injury, the
operation, and the particular conditions of the input data that results in anomalous
resulting value. For the sample values assigned to these parameters and CWE mappings
refer to spreadsheet accompanying this document.

The following sections describe each group of computations and the corresponding
CWE:s in more detail.

4.1.1.2 Wrap around Error

This group covers unconstrained numeric operations where the data value can be proven
to exceed the boundary value of the corresponding datatype.

This group has 3 CWEs. All CWEs are discernible.

24

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

128 | Wrap-around Error Wrap around errors occur whenever a value is
incremented past the maximum value for its type
and therefore "wraps around" to a very small,
negative, or undefined value.

190 | Integer Overflow or The software performs a calculation that can
Wraparound produce an integer overflow or wraparound, when
the logic assumes that the resulting value will
always be larger than the original value. This can
introduce other weaknesses when the calculation is
used for resource management or execution

control.
191 | Integer Underflow (Wrap The product subtracts one value from another, such
or Wraparound) that the result is less than the minimum allowable

integer value, which produces a value that is not
equal to the correct result.

Full parameterization of this SFP is detailed in the accompanying spreadsheet.

4.1.1.3 Unsafe Type Conversion

This group covers type conversion operations where the data value can be proven to
change in often unexpected ways.

This group has 6 CWEs. All CWEs in the group are discernible.

The following table lists all discernible CWEs that contribute to this group:

194 | Unexpected Sign Extension | The software performs an operation on a number
that causes it to be sign extended when it is
transformed into a larger data type. When the
original number is negative, this can produce
unexpected values that lead to resultant

weaknesses.
195 | Signed to Unsigned A signed-to-unsigned conversion error takes place
Conversion Error when a signed primitive is used as an unsigned

value, usually as a size variable.

196 | Unsigned to Signed An unsigned-to-signed conversion error takes place
Conversion Error when a large unsigned primitive is used as a signed
value.
25

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

197 | Numeric Truncation Error | Truncation errors occur when a primitive is cast to
a primitive of a smaller size and data is lost in the

conversion.
681 | Incorrect Conversion When converting from one data type to another,
between Numeric Types such as long to integer, data can be omitted or

translated in a way that produces unexpected
values. If the resulting values are used in a
sensitive context, then dangerous behaviors may
occur.

704 | Incorrect Type Conversion | The software does not correctly convert an object,
or Cast resource or structure from one type to a different

type.

4.1.14 Incorrect Pointer Scaling

This group contains a very specific operation involving a combination of pointer
arithmetic a type conversion, which is known to generate unexpected values and
correlates with field issues.

This group has 1 CWE. The CWE in the group is discernible.

The following table lists all discernible CWEs that contribute to this group:

468 | Incorrect Pointer Scaling In C and C++, one may often
accidentally refer to the wrong
memory due to the semantics of
when math operations are implicitly
scaled.

4.1.1.5 Use of an Uninitialized Value

This group covers the use of the value of an uninitialized value. An Uninitialized value
only manifests itself when it is used in an operation (other than reassignment of passing
as a by value parameter to other function).

This group has 2 CWEs. All CWEs are discernible.

The following table lists all discernible CWEs that contribute to this group:

45 | Missing Initialization | The software does not initialize critical variables, which
6 causes the execution environment to use unexpected
values.

26

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

45 | Use of Uninitialized | The code uses a variable that has not been initialized,
7 Variable leading to unpredictable or unintended results.

4.1.1.6 Divide by Zero

This group covers the use of a value zero as the second operand of the division operation.
This group has 1 discernible CWE.

The following table lists all discernible CWEs that contribute to this group:

36 | Divide By Zero The product divides a value by zero.
9

4.1.1.7 Suspicious Condition

This group covers suspicious conditions that always select a single branch, or may
involve incorrect assignments or may not account for a short circuit in condition logic.

This group has 6 CWEs. All CWEs in the group are discernible.

The following table lists all discernible CWEs that contribute to this group:

481 | Assigning instead of The code uses an operator for assignment when the
Comparing intention was to perform a comparison.

486 | Comparison of Classes by | The program compares classes by name, which can
Name cause it to use the wrong class when multiple
classes can have the same name.

570 | Expression is Always False | The software contains an expression that will
always evaluate to false.

571 | Expression is Always True | The software contains an expression that will
always evaluate to true.

597 | Use of Wrong Operator in | The product uses the wrong operator when
String Comparison comparing a string, such as using "==" when the
equals() method should be used instead.

768 | Incorrect Short Circuit The software contains conditionals with multiple
Evaluation logical expressions where one or more of the non-
leading logical expressions produce side effects
that may not be executed due to short circuiting
logic. This may lead to an unexpected state in the
program after the execution of the conditional.

27

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Full parameterization of this SFP is detailed in the accompanying spreadsheet.

4.1.1.8 Incorrect Operation on Non-serializable Object

This group covers several related misuse scenarios for non-serialized objects.

This group has 2 CWEs. All CWEs in the group are discernible.

The following table lists all discernible CWEs that contribute to this group:

579 | J2EE Bad Practices: Non- | The application stores a non-serializable object as
serializable Object Stored | an HttpSession attribute, which can hurt reliability.
in Session

594 | J2EE Framework: Saving | When the J2EE container attempts to write
Unserializable Objects to unserializable objects to disk there is no guarantee
Disk that the process will complete successfully.

Full parameterization of this SFP is detailed in the accompanying spreadsheet.

4.1.19 Incorrect Parameters to an API

This group covers common weaknesses related to parameter passing to and from an API
call.

This group has 7 CWEs. 3 CWEs in the group are discernible. 4 CWEs are non-
discernible.

The following table lists all discernible CWEs that contribute to this group:

475 | Undefined Behavior for The behavior of this function is undefined unless
Input to API its control parameter is set to a specific value.

685 | Function Call With The software calls a function, procedure, or
Incorrect Number of routine, but the caller specifies too many
Arguments arguments, or too few arguments, leading to

undefined behavior and resultant weaknesses.

686 | Function Call With The software calls a function, procedure, or
Incorrect Argument Type routine, but the caller specifies an argument that is
the wrong data type, leading to resultant
weaknesses.

Non-discernible CWEs in this cluster:

28

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

628 | Function Call with The product calls a function, procedure, or routine
Incorrectly Specified with arguments that are not correctly specified,
Arguments leading to always-incorrect behavior and resultant

weaknesses.

683 | Function Call With The software calls a function, procedure, or
Incorrect Order of routine, but the caller specifies the arguments in an
Arguments incorrect order, leading to resultant weaknesses.

687 | Function Call With The software calls a function, procedure, or
Incorrectly Specified routine, but the caller specifies an argument that
Argument Value contains the wrong value, leading to resultant

weaknesses.

688 | Function Call With The software calls a function, procedure, or
Incorrect Variable or routine, but the caller specifies the wrong variable
Reference as Argument or reference as one of the arguments, leading to

undefined behavior and resultant weaknesses.

Full parameterization of this SFP is detailed in the accompanying spreadsheet.

4.1.1.10 Faulty Pointer Creation

This group is closely related to faulty pointer use, but focuses at the scenarios where
faulty pointers are usually created (rather than the places where they are used).

This group has 4 CWEs. All CWEs in the group are discernible.
The following table lists all discernible CWEs that contribute to this group:

466 | Return of Pointer Value A function can return a pointer to memory that is
Outside of Expected Range | outside of the buffer that the pointer is expected to
reference.

562 | Return of Stack Variable A function returns the address of a stack variable,
Address which will cause unintended program behavior,
typically in the form of a crash.

587 | Assignment of a Fixed The software sets a pointer to a specific address
Address to a Pointer other than NULL or 0.

NOTE: there are related software fault patterns:

SFP7 Faulty pointer use (uses of incorrect data items)

4.2 Primary Cluster: Unused Entities

This cluster covers a general case of unused entities in code, including unused procedures
or variables.

29

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This cluster contains 3 CWEs. These CWEs are based on discernible properties and are
therefore covered by software fault patterns.

The Unused Entities cluster includes a single secondary cluster:

o Unused entities — this cluster covers a general case of unused code that is defined
for entire entities, like unused procedures or variables

4.2.1 Secondary Cluster: Unused Entities

This cluster covers a general case of unused entities in code, including unused procedures
or variables. “Usage” of an entity (be it a variable or a procedure) is defined in terms of
any kinds of incoming relationships. Note that these relationships are different for
variables and procedures. Only “first order” uses are considered, for example, if
procedure “A” is being called only from another procedure “B”, which is in itself
“unused”, procedure “A” is not considered “unused”. (NOTE: This particular cluster has
direct applicability to the aviation industry where “Dead Code” is not allowed in avionics
safety critical software.)

This cluster has 3 CWEs. All CWEs in the cluster are discernible.

4.2.1.1 SFP2 Unused Entities
Software Fault Pattern — an entity that does not have incoming usage relationships
NOTE: This software fault pattern does not involve a code path.

The parameter of this software fault pattern is: entity. The software fault pattern is
parameterized with the particular kind of entity to report.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

482 | Comparing instead of The code uses an operator for comparison when
Assigning the intention was to perform an assignment.
561 | Dead Code The software contains dead code, which can never

be executed.

563 | Unused Variable The variable's value is assigned but never used,
making it a dead store.

Full parameterization of this SFP is detailed in the accompanying spreadsheet.

30

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.3 Primary Cluster: API

This cluster of weaknesses relates to the use of Application Programming Interfaces
(API) which are calls to encapsulated functionality provided by the runtime platform.
Common characteristics of the weaknesses in this cluster involve:

o Known incompatibilities between different parts of the runtime platform
o API, commonly known as dangerous or otherwise problematic
o Common problems related to parameter passing to API calls
The common pattern for this group of weaknesses involves a call to an external procedure

or method which may also involve some parameter passing.

This cluster contains 28 CWEs. 20 of these CWEs are based on discernible properties and
are therefore covered by software fault patterns.

The API cluster includes a single secondary cluster:

o Use of an improper API — this cluster covers common patterns involving only the
identity of the API being called.

4.3.1 Secondary Cluster: Use of an Improper API

This cluster covers common patterns involving only the identity of the API being called.

This cluster has 28 CWEs. 20 CWEs in the cluster are discernible. 8 CWESs are non-
discernible.

43.1.1 SFP3 Use of an Improper API
Software Fault Pattern - a weakness where the code path has all of the following:

o an end statement that performs an API call where the call is not appropriate for
the given platform

NOTE: This software fault pattern considers only the name of the API. It considers the
knowledge base to determine the appropriateness of the API call on the given platform.
Some APIs are annotated in the knowledge base, while other cases are described as
incompatibility between two platform containers.

31

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

The following table lists all discernible CWEs that contribute to this software fault

pattern:

111 | Direct Use of Unsafe JNI When a Java application uses the Java Native
Interface (JNI) to call code written in another
programming language, it can expose the
application to weaknesses in that code, even if
those weaknesses cannot occur in Java.

242 | Use of Inherently The program calls a function that can never be

Dangerous Function

guaranteed to work safely.

Java I/O

245 | J2EE Bad Practices: Direct | The J2EE application directly manages
Management of connections, instead of using the container's
Connections connection management facilities.

246 | J2EE Bad Practices: Direct | The J2EE application directly uses sockets instead
Use of Sockets of using framework method calls.

382 | J2EE Bad Practices: Use of | A J2EE application uses System.exit(), which also
System.exit() shuts down its container.

383 | J2EE Bad Practices: Direct | Thread management in a Web application is
Use of Threads forbidden in some circumstances and is always

highly error prone.

474 | Use of Function with The code uses a function that has inconsistent
Inconsistent implementations across operating systems and
Implementations versions, which might cause security-relevant

portability problems.

477 | Use of Obsolete Functions | The code uses deprecated or obsolete functions,
which suggests that the code has not been actively
reviewed or maintained.

479 | Unsafe Function Call from | The program has a signal handler that calls an

a Signal Handler unsafe function, leading to unpredictable results.

558 | Use of getlogin() in The application uses the getlogin() function in a
Multithreaded Application | multithreaded context, potentially causing it to

return incorrect values.

574 | EJB Bad Practices: Use of | The program violates the Enterprise JavaBeans
Synchronization Primitives | (EJB) specification by using thread

synchronization primitives.

575 | EJB Bad Practices: Use of | The program violates the Enterprise JavaBeans
AWT Swing (EJB) specification by using AWT/Swing.

576 | EJB Bad Practices: Use of | The program violates the Enterprise JavaBeans

(EJB) specification by using the java.io package.

32

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

577 | EJB Bad Practices: Use of | The program violates the Enterprise JavaBeans
Sockets (EJB) specification by using sockets.

578 | EJB Bad Practices: Use of | The program violates the Enterprise JavaBeans
Class Loader (EJB) specification by using the class loader.

589 | Call to Non-ubiquitous API | The software uses an API function that does not
exist on all versions of the target platform. This
could cause portability problems or inconsistencies
that allow denial of service or other consequences.

676 | Use of Potentially The program invokes a potentially dangerous

Dangerous Function function that could introduce vulnerability if it is
used incorrectly, but the function can also be used
safely.

617 | Reachable Assertion The product contains an assert() or similar
statement that can be triggered by an attacker,
which leads to an application exit or other behavior
that is more severe than necessary.

572 | Call to Thread run() instead | The program calls a thread's run() method instead

of start() of calling start(), which causes the code to run in
the thread of the caller instead of the callee.

586 | Explicit Call to Finalize() The software makes an explicit call to the finalize()
method from outside the finalizer.

Non-discernible CWE:s in this cluster:

227 | Failure to Fulfill API The software uses an API in a manner contrary to
Contract ("API Abuse") its intended use.

432 | Dangerous Handler not The application does not properly clear or disable
Disabled During Sensitive | dangerous handlers during sensitive operations.
Operations

439 | Behavioral Change in New | A's behavior or functionality changes with a new
Version or Environment version of A, or a new environment, which is not

known (or manageable) by B.

440 | Expected Behavior A feature, API, or function being used by a product
Violation behaves differently than the product expects.

573 | Failure to Follow The software fails to follow the specifications for
Specification the implementation language, environment,

framework, protocol, or platform.

33

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

684 | Failure to Provide The code does not function according to its
Specified Functionality published specifications, potentially leading to

incorrect usage.

695 | Use of Low-Level The software uses low-level functionality that is
Functionality explicitly prohibited by the framework or

specification under which the software is supposed
to operate.

758 | Reliance on Undefined, The software uses an API function, data structure,
Unspecified, or or other entity in a way that relies on properties
Implementation-Defined that are not always guaranteed to hold for that
Behavior entity.

4.4 Primary Cluster: Exception Management

This cluster of weaknesses relates to the basic management of exceptions and other status
conditions usually arising from the interactions with the runtime platform. Common
characteristics of the weakness in this cluster include:

o Actual state of computation

o Expected state of the computation
o Status condition

o Status condition check

o Operation that report status

o Code region coordinated with state.

This cluster is fundamental to the various computations performed by software systems.
Therefore this cluster is associated with virtually all other clusters either through the use
of APIs and primitive operations (operations that report status) or through condition
checks.

This cluster contains 27 CWEs. 18 CWE:s in this cluster are based on discernible
properties and are therefore covered by software fault patterns, while others involve non-
discernible properties in their descriptions and do not contribute to any software fault
patterns until more white-box scenarios for these weaknesses are discovered and agreed
upon by the community.

The Exception Management cluster includes the following 3 secondary clusters:

Unchecked status condition — this cluster covers common situations where the
identity of the status condition is lost resulting resource operations that may be

34

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.4.1

performed at the incorrect objects or entire code regions where the actual state of
some object is not coordinated with the expected state of this object.

Ambiguous exception type — this cluster covers several common patterns where
the so-called exception signature includes more general exceptions than the ones
actually generated by the corresponding code region.

Incorrect exception behavior — this cluster covers several common situations
where the exception handling behavior is problematic however this cluster almost
entirely lacks sufficient white-box content

Secondary Cluster: Unchecked Status Condition

This cluster covers common situations where the identity of the status condition is lost
resulting resource operations that may be performed at the incorrect objects or entire code
regions where the actual state of some object is not coordinated with the expected state of
this object.

This cluster has 17 CWEs. 13 CWEs in the cluster are discernible. 4 CWEs are non-
discernible.

4.4.1.1

SFP4 Unchecked Status Condition

Software Fault Pattern - a weakness where the code path has all of the following:

o a start statement that produces status condition

o an end statement incorrectly acts on the status condition

o where “incorrect act” is defined as exactly one of the following:

o status condition never obtained and used
o status condition obtained but not used

o status condition incorrectly validated such as that actual and expected
status mismatch

The following table lists all discernible CWEs that contribute to this software fault

pattern:

248 | Uncaught Exception Failing to catch an exception thrown from a
dangerous function can potentially cause the
program to crash.

252 | Unchecked Return Value The software does not check the return value from
a method or function, which can prevent it from

35

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

detecting unexpected states and conditions.

253 | Incorrect Check of The software incorrectly checks a return value
Function Return Value from a function, which prevents the software from

detecting errors or exceptional conditions.

273 | Improper Check for The software attempts to drop privileges but does
Dropped Privileges not check or incorrectly checks to see if the drop

succeeded.

280 | Improper Handling of The application does not handle or incorrectly
Insufficient Permissions or | handles when it has insufficient privileges to
Privileges access resources or functionality as specified by

their permissions. This may cause it to follow
unexpected code paths that may leave the
application in an invalid state.

390 | Detection of Error The software detects a specific error, but takes no
Condition Without Action | actions to handle the error.

391 | Unchecked Error Condition | Ignoring exceptions and other error conditions may
allow an attacker to induce unexpected behavior
unnoticed.

394 | Unexpected Status Code or | The software does not properly check when a

Return Value function or operation returns a value that is
legitimate for the function, but is not expected by
the software.

431 | Missing Handler A handler is not available or implemented.

600 | Failure to Catch All A Servlet fails to catch all exceptions, which may
Exceptions in Servlet reveal sensitive debugging information.

665 | Improper Initialization The software does not initialize or incorrectly
initializes a resource, which might leave the
resource in an unexpected state when it is accessed
or used.

478 | Missing Default Case in The code does not have a default case in a switch

Switch Statement statement, which might lead to complex logical
errors and resultant weaknesses.

484 | Omitted Break Statement The program omits a break statement within a

in Switch

switch or similar construct, causing code
associated with multiple conditions to execute.
This can cause problems when the programmer
only intended to execute code associated with one
condition.

36

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Non-discernible CWEs in this cluster:

372 | Incomplete Internal State The software does not properly determine which
Distinction state it is in, causing it to assume it is in state X
when in fact it is in state Y, causing it to perform
incorrect operations in a security-relevant manner.

395 | Use of Catching NullPointerException should not be used
NullPointerException as an alternative to programmatic checks to
Catch to Detect NULL prevent dereferencing a null pointer.
Pointer Dereference

754 | Improper check for The software fails to check or improperly checks
Exceptional Conditions for an exceptional condition.

755 | Improper Handling of The software fails to handle or improperly handles
Exceptional Conditions an exceptional condition.

Comments:

CWE 252 status condition lost all references or status condition was not checked.
CWE 253 there is a mismatch between the required precondition and the status condition.

CWE 273 where the status condition is related to dropped privileges and the status. The
condition lost all references or is not checked or there is a mismatch between the required
precondition and the status condition.

CWE 394 where the status condition lost all references or is not checked or there is a
mismatch between the required precondition and the status condition.

Note: 394 is a union of 252 and 253.

CWE 248, 431, 600 where the status condition is reported as exception and is lost at the
entry point of the application (no appropriate catch in the entire method call stack).

This software fault pattern uses the following knowledge base:

o <platform> <resource> <api> <status condition> how status condition is returned
(return value, argument, global variable, exception)

o <Platform> <resource> <api> <status condition> <condition> <state> the post
condition; what are the value ranges of the status condition, and symbolic name of
the corresponding state

o Meaning that on the given platform, a certain api call returns status condition and
for the given value of condition the resource is in a given state

o <platform> <resource> <api> <precondition> <state> the precondition; symbolic
name of the acceptable state.

37

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

NOTE: This knowledge base also handles resource initialization and several other issues.

4.4.2 Secondary Cluster: Ambiguous Exception Type

This cluster covers several common patterns where the so-called exception signature
includes more general exceptions than the ones actually generated by the corresponding
code region.

This cluster has 2 CWEs. All CWEs in the cluster are discernible.

44.2.1 SFPS Ambiguous Exception Type

Software Fault Pattern - a weakness where the code path has all of the following:

o an end statement that requires exception signature where the exception signature
is more general than the corresponding exception profile

Where:

o Exception profile is the set of exceptions thrown by a code fragment
EP={el, ..., ek}

o Exception signature is the set of exceptions declared for the try-block (in
which case it should match the exception profile of the try-block) or at the
method declaration (in which case it should match the exception profile of
the entire method) ES={s1,...,sl}

o Exception signature (ES) is more general than the exception profile (EP)
of the corresponding code fragment if ES contains s which is a supertype
of one or more ei in EP.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

396 | Declaration of Catch for Catching overly broad exceptions promotes
Generic Exception complex error handling code that is more likely to
contain security vulnerabilities.

397 | Declaration of Throws for | Throwing overly broad exceptions promotes
Generic Exception complex error handling code that is more likely to
contain security vulnerabilities.

Comments:
CWE 396 exception signature at the try-block
CWE 397 exception signature at the method declaration

38

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.4.3 Secondary Cluster: Incorrect exception Behavior

This cluster covers several common situations where the exception handling behavior is
problematic however this cluster almost entirely lacks sufficient white-box content.

This cluster has 8 CWEs. 3 CWE in the cluster are discernible. There are 5 non-
discernible CWEs in this cluster.

4.43.1 SFP6 Incorrect Exception Behavior
Software Fault Pattern - a weakness where the code path has all of the following:

o a start statement that assigns incorrect value to status condition

o an end statement that uses incorrect value of status condition

The following table lists all discernible CWEs that contribute to this software fault
pattern:

392 | Failure to Report Error in The software encounters an error but does not
Status Code return a status code or return value to indicate that
an error has occurred.

393 | Return of Wrong Status A function or operation returns an incorrect return
Code value or status code that does not indicate an error,
but causes the product to modify its behavior based
on the incorrect result.

584 | Return Inside Finally Block | The code has a return statement inside a finally
block, which will cause any thrown exception in
the try block to be discarded.

Non-discernible CWEs in the incorrect exception behavior cluster:

455 | Non-exit on Failed The software does not exit or otherwise modify its
Initialization operation when security-relevant errors occur
during initialization, such as when a configuration
file has a format error, which can cause the
software to execute in a less secure fashion than
intended by the administrator.

460 | Improper Cleanup on The product does not clean up its state or
Thrown Exception incorrectly cleans up its state when an exception is
thrown, leading to unexpected state or control
flow.
39

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

544 | Failure to Use a The software does not use a standardized method

Standardized Error for handling errors throughout the code, which
Handling Mechanism might introduce inconsistent error handling and
resultant weaknesses.
636 | Not Failing Securely When the product encounters an error condition or
('Failing Open") failure, its design requires it to fall back to a state

that is less secure than other options that are
available, such as selecting the weakest encryption
algorithm or using the most permissive access
control restrictions.

703 | Failure to Handle The software does not properly anticipate or handle
Exceptional Conditions exceptional conditions that rarely occur during
normal operation of the software.

4.5 Primary Cluster: Memory Access

This cluster of weaknesses relates to access to memory buffers. Common characteristics
of this cluster include:

o Buffer, including stack and heap buffers; static and dynamic buffers
o Buffer identity (pointer, name)

o Buffer access operations, including implicit buffer access (also known as string
expansion)

o Operations involving buffer
o Pointer uses, including pointer export

Through these characteristics this cluster is associated with the following clusters:

o Memory management (through buffer)
o Information leak (through buffer cleanup)

o Tainted input and risky values (through properties of buffer access operation, such
as data length, index; through buffer properties such as buffer length)

o Synchronization (through buffers that can be shared resources)

o API (through passing faulty pointers as parameters)

40

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Exception management (through buffer status and other status conditions
involved in various buffer operations).

This cluster contains 20 CWEs. 19 of the CWEs in this cluster are based on discernible
properties and are therefore covered by few software fault patterns. There is 1 non-
discernible CWE in this cluster.

The “Memory access” cluster includes the following 5 secondary clusters:

Faulty pointer use — this cluster covers common scenarios of using incorrect pointers
to buffers

. Faulty buffer access — this cluster covers the common scenarios related to various
buffer overflows, underflows and related weaknesses

m. Faulty string expansion — this cluster covers scenarios related to the use of certain
API calls that involve implicit buffers and may lead to buffer overflows

n. Incorrect buffer length computation — this cluster covers scenarios related to
several known situations where the length of a buffer is incorrectly computed

o. Improper NULL termination — this cluster covers scenarios related to several
operations involving buffer which may lead to buffer overflows due to mismatch
in data terminators within the data stored in the buffer

4.5.1 Secondary Cluster: Faulty Pointer Use

This cluster covers common scenarios of using incorrect pointers to buffers.

This cluster has 3 CWEs. All CWEs in the cluster are discernible.

45.1.1 SFP7 Faulty Pointer Use

Software Fault Pattern - a weakness where the code path has all of the following:

o an end statement that performs use of pointer with NULL value or “out of range”
value

Where an “out of range” is defined as access to memory chunk thorough exactly
one of the following:
o faulty address obtained as a subtraction of two pointers to different

memory chunks or

o faulty type such as use of a pointer to access a structure element where the
pointer was cast from a data item that is not of a structure datatype

41

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

The start statement of the code path is determined by the data flow that associates the
pointer to the corresponding data chunk.

Related software fault pattern:
o SFP15 Faulty resource use

The following table lists all discernible CWEs that contribute to this software fault
pattern:

476 | NULL Pointer Dereference | A NULL pointer dereference occurs when the
application dereferences a pointer that it expects to
be valid, but is NULL, typically causing a crash or
exit.

469 | Use of Pointer Subtraction | The application subtracts one pointer from another
to Determine Size in order to determine size, but this calculation can
be incorrect if the pointers do not exist in the same
memory chunk.

588 | Attempt to Access Child of | Casting a non-structure type to a structure type and
a Non-structure Pointer accessing a field can lead to memory access errors
or data corruption.

4.5.2 Secondary Cluster: Faulty Buffer Access

This cluster covers the common scenarios related to various buffer overflows, underflows
and related weaknesses.

This cluster has 11 CWEs. All CWEs in the cluster are discernible.

4.52.1 SFP8 Faulty Buffer Access
Software Fault Pattern - a weakness where the code path has all of the following:
o an end statement that performs a Buffer Access Operation and where exactly one

of the following is true:

o the access position of the Buffer Access Operation is outside of the buffer
or

o the access position of the Buffer access Operation is inside the buffer and
the size of of the data being accessed is greater than the remaining size of
the buffer at the access position

This is where the Buffer Access Operation is a statement that performs access to a
data item of a certain size at access position. The access position of a Buffer

42

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

access Operation is related to a certain buffer and can be either inside the buffer

or outside of the buffer.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

118

Improper Access of
Indexable Resource
('Range Error')

The software does not restrict or incorrectly
restricts operations within the boundaries of a
resource that is accessed using an index or pointer,
such as memory or files.

119 | Failure to Constrain The software may potentially allow operations,
Operations within the such as reading or writing, to be performed at
Bounds of a Memory addresses not intended by the developer.

Buffer

120 | Buffer Copy without The program copies an input buffer to an output
Checking Size of Input buffer without verifying that the size of the input
('Classic Buffer Overflow') | buffer is less than the size of the output buffer,

leading to a buffer overflow.

121 | Stack-based Buffer A stack-based buffer overflow condition is a
Overflow condition where the buffer being overwritten is

allocated on the stack (i.e., is a local variable or,
rarely, a parameter to a function).

122 | Heap-based Buffer A heap overflow condition is a buffer overflow,
Overflow where the buffer that can be overwritten is

allocated in the heap portion of memory, generally
meaning that the buffer was allocated using a
routine such as malloc().

123 | Write-what-where Any condition where the attacker has the ability to
Condition write an arbitrary value to an arbitrary location,

often as the result of a buffer overflow.

124 | Boundary Beginning The software allows a condition where buffers are
Violation ('Buffer written to using inappropriate memory access
Underwrite') mechanisms such as indexes or pointers that

reference memory locations prior to the targeted
buffer.

125 | Out-of-bounds Read The software reads data past the end, or before the

beginning, of the intended buffer.

126 | Buffer Over-read The software reads data past the end of the

intended buffer.

127 | Buffer Under-read The software reads data before the start of the

intended buffer.

43

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

129

Unchecked Array Indexing | Unchecked array indexing occurs when an
unchecked value is used as an index into a buffer.

This software fault pattern has the following parameters:

©)

o

(©]

Access

o Reads

o Writes

Buffer

o Stack

o Heap

Access Position

o Array with index

o Pointer

This cluster has the following parameterization:

(@]

CWE 118: Improper Access of Indexable Resource: An FBA where access
position is array with index'

CWE 119: Failure to Constrain Operations within the boundaries of a memory
buffer: folds under generic FBA

CWE 121: Stack Overflow: An FBA where the buffer is allocated on the stack
and access position is insight the buffer and access is write

CWE 122: Heap Overflow: An FBA where the buffer is allocated in the heap and
access position is insight the buffer and access is write

CWE 123: Write-what-where Condition: An FBA where access is write

CWE 124: Buffer Under-write: An FBA where the buffer access is write and
access position is outside of the buffer

CWE 125: Out-of-bounds read: An FBA where the buffer access is read

' Here the CWE is constrained to operations on memory buffers.

44

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o CWE 126: Buffer Over-read: An FBA where the buffer access is read and access
position is inside of the buffer

o CWE 127: Buffer Under-read: An FBA where the buffer access is read and access
position is outside of the buffer

o CWE 129: Unchecked array indexing: An FBA where the access position is array
with index

Full parameterization of this SFP is detailed in the accompanying spreadsheet.

4.5.3 Secondary Cluster: Faulty String Expansion

This cluster covers scenarios related to the use of certain API calls that involve implicit
buffers and may lead to buffer overflows.

This cluster has 2 discernible CWEs.
453.1 SFP9 Faulty String Expansion
Software Fault Pattern - a weakness where the code path has all of the following:

o a start statement that allocates a buffer

o an end statement that performs an implicit buffer access through function call that
is characterized by buffer parameters such as the actual buffer size and the
expected buffer size where the expected buffer size is greater than the actual
buffer size

The following table lists all discernible CWEs that contribute to this software fault
pattern:

249 | Often Misused: Path Passing an inadequately-sized output buffer to a
Manipulation path manipulation function can result in a buffer
overflow.

785 | Use of Path Manipulation | The software invokes a function for normalizing
Function without paths or file names, but it provides an output buffer
Maximum-sized Buffer that is smaller than the maximum possible size,
such as PATH MAX.

4.5.4 Secondary Cluster: Incorrect Buffer Length Computation

This cluster covers scenarios related to several known situations where the length of a
buffer is incorrectly computed.

45

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This cluster has 3 CWEs. 2 CWEs in the cluster are discernible. There is 1 non-
discernible CWE.

4.5.4.1 SFP10 Incorrect Buffer Length Computation

Software Fault Pattern - a weakness where the code path has all of the following:

o an end statement that performs memory allocation for a datatype based on an
existing data item of datatype where the computed length of the buffer is
incorrect

Where incorrect length of the buffer involves exactly one of the following:

o size of requested buffer is smaller than needs to be
o size of requested buffer is bigger than needs to be

The following table lists all discernible CWEs that contribute to this software fault
pattern:

135 | Incorrect Calculation of The software does not correctly calculate the
Multi-Byte String Length length of strings that can contain wide or multi-
byte characters.

467 | Use of sizeof() on a Pointer | The code calls sizeof() on a malloced pointer type,
Type which always returns the wordsize/8. This can
produce an unexpected result if the programmer
intended to determine how much memory has been
allocated.

The following table lists non-discernible CWE:s in this cluster:

131 | Incorrect Calculation of The software does not correctly calculate the size
Buffer Size to be used when allocating a buffer, which could
lead to a buffer overflow.

4.5.5 Secondary Cluster: Improper NULL Termination

This cluster covers scenarios related to several operations involving buffer which may
lead to buffer overflows due to mismatch in data terminators within the data stored in the
buffer.

This cluster has 1 discernible CWE.

46

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

45.5.1 SFP11 Improper NULL Termination

Software Fault Pattern - a weakness where the code path has all of the following:

o an end statement that passes a data item to a null-terminated string operation
where the data item is non-null-terminated

Where the data can become non-null-terminated in at least one of the following
ways:
o data originated from a length-based string operation where the terminator
is not automatically added

o null-terminated string was incorrectly transferred and the terminator was
omitted

o the null terminator has been overwritten

o array is interpreted as a string where the null terminator is not present in
the array

The following table lists all discernible CWEs that contribute to this software fault
pattern:

170 | Improper Null Termination | The software does not properly terminate a string
or array with a null character or equivalent
terminator.

4.6 Primary Cluster: Memory Management

This is a cluster of weaknesses relates to the management of memory buffers (as opposed
to access to memory buffers). Common characteristics of this cluster include:

o Buffer, including stack and heap buffers; static and dynamic buffers
o Buffer identity (pointer, name)

o Buffer allocation operation

o Buffer release operation

o Management of buffer identities

Through these characteristics this cluster is associated with the following clusters:

o Memory access

47

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Resource management (memory buffer is a special kind of resource)

This cluster contains 5 CWEs. All of the CWEs in this cluster are based on
discernible properties and are therefore covered by few software fault patterns.

The Memory Management cluster includes a single secondary cluster:

o Faulty memory release — this cluster covers various scenarios related to incorrect
release of memory buffers. The foot-hold of this scenario is the buffer release
operation.

4.6.1 Secondary Cluster: Faulty Memory Release

This cluster covers various scenarios related to incorrect release of memory buffers. The
foot-hold of this scenario is the buffer release operation.

This cluster has 5 CWEs. All CWEs in the cluster are discernible.

4.6.1.1 SFP12 Faulty Memory Release

Software Fault Pattern - a weakness where the code path has all of the following:

an end statement that releases memory via a reference where the reference points to either
incorrect address or incorrect address type NOTE: For example, in C++ some of the valid
pairs of allocation/release services are malloc/free, new/delete, new[]/delete[]. Memory
buffer allocation should to be supported by “runtime platform knowledge”, which should
include all valid pairs for the given platform. The memory buffer status property has to
include the type of allocation (including calloc() which involves extra initialization). So,
when the pointer is tracked down to the corresponding memory buffer, the type of buffer
release is matched to the type of buffer allocation.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

415 | Double Free The product calls free() twice on the same memory
address, potentially leading to modification of
unexpected memory locations.

590 | Free of Memory not on the | The application calls free() on a pointer to memory
Heap that was not allocated using associated heap
allocation functions such as malloc(), calloc(), or
realloc().

761 | Free of Pointer not at Start | The application calls free() on a pointer to a
of Buffer memory resource that was allocated on the heap,
but the pointer is not at the start of the buffer.

48

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

762 | Mismatched Memory The application attempts to return a memory
Management Routines resource to the system, but it calls a release
function that is not compatible with the function
that was originally used to allocate that resource.
763 | Release of Invalid Pointer | The application attempts to return a memory

or Reference resource to the system, but calls the wrong release
function or calls the appropriate release function
incorrectly.

4.7 Primary Cluster: Resource Management

This cluster of weaknesses relates to management of resources. “Resource” is defined as
a dynamic entity provided by the runtime platform. Resources are managed through
certain platform-specific APIs. The software application manages the identity of the
resource. Common characteristics of this cluster include:

o

o

o

o

Resource

Resource identity

Management of resource identity
Resource access operations
Resource allocation operations
Resource release operations

State of resource

Through these characteristics the “Resource Management” cluster is associated with the
following other clusters:

(@]

(@]

o

o

Access control, authentication, privilege (through resource access operations)
Synchronization (resource can be shared)
Exception management (through resource state and other status conditions)

Memory management (memory buffer is a special kind of resource).

This cluster contains 17 CWEs. 12 of the CWEs in this cluster are based on discernible
properties and are therefore covered by few software fault patterns. There are 5 non-
discernible CWEs in this cluster.

The Resource Management cluster includes the following 4 secondary clusters:

49

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Unrestricted consumption — this cluster covers various scenarios where there is an
unrestricted loopback to resource allocation without the corresponding resource
release, leading to unlimited consumption of resources, especially in the so-called
“request regions”, or the code fragments associated with the user input.

p. Failure to release resource — this cluster covers various scenarios where the
identity of a release is mismanaged resulting in the so-called resource leaks.

q. Faulty resource use — this cluster covers uses of resource in released (or otherwise

incorrect) state

r. Life cycle — this cluster covers various situations related to incorrect management
of resource life cycle. The CWEs in this cluster are all based on non-discernible

properties.

4.7.1 Secondary Cluster: Unrestricted Consumption

This cluster covers various scenarios where there is an unrestricted loopback to resource
allocation without the corresponding resource release, leading to unlimited consumption
of resources, especially in the so-called “request regions”, or the code fragments

associated with the user input.

This cluster has 4 CWEs. 3 CWEs in the cluster are discernible. 1 CWE is non-

discernible.

4.7.1.1 SFP13 Unrestricted Consumption

Software Fault Pattern - a weakness where the code path has all of the following:

o an end statement that performs resource allocation where there is a loopback path
and the resource is not released and the allocation control is absent.

This is where “allocation control” is defined as the condition associated with the
code path that limits the number of the allocated resource instances.

The following table lists all discernible CWEs that contribute to this software fault

pattern:

400 | Uncontrolled Resource
Consumption ('Resource
Exhaustion')

The software does not properly restrict the size or
amount of resources that are requested by an actor,
which can be used to consume more resources than
intended.

674 | Uncontrolled Recursion

The product does not properly control the amount
of recursion that takes place, which consumes
excessive resources, such as allocated memory or

50

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

the program stack.

774 | Allocation of File
Descriptors or Handles
Without Limits or
Throttling

The software allocates file descriptors or handles
on behalf of an actor without imposing any
restrictions on how many descriptors can be
allocated, in violation of the intended security
policy for that actor.

The following table lists all non-discernible CWE:s in this cluster:

770 | Allocation of Resources
without Limits of
Throttling

The software allocates a reusable resource or group
of resources on behalf of an actor without
imposing any restrictions on how many resources
can be allocated, in violation of the intended
security policy for that actor.

4.7.2 Secondary Cluster: Failure to release resource

This cluster covers various scenarios where the identity of a release is mismanaged
resulting in the so-called “resource leaks”.

This cluster has 7 CWEs. All CWEs in the cluster are discernible.

4.72.1 SFP14 Failure to release resource

Software Fault Pattern - a weakness where the code path has all of the following:

o a start statement performs resource allocation

o an end statement that loses identity of the resource and the resource is not in

released state

Where “loses identity" is defined as one of the following:

o resource identity has not been not stored when received

o resource identity has been obtained but was over-written (missing beyond

recovery)

o resource identity was never passed to the resource release function

o resource identity is stored in a data item and the data item goes out of
scope (no more aliases remain)

51

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o resource identity is stored in a data item and the data item is destroyed.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

401

Failure to Release Memory
Before Removing Last
Reference (‘Memory Leak')

The software does not sufficiently track and release
allocated memory after it has been used, which
slowly consumes remaining memory.

Descriptor or Handle after
effective Lifetime

404 | Improper Resource The program does not release or incorrectly
Shutdown or Release releases a resource before it is made available for

re-use.

459 | Incomplete Cleanup The software does not properly "clean up" and
remove temporary or supporting resources after
they have been used.

771 | Missing Reference to The software does not properly maintain a

Active Allocated Resource | reference to a resource that has been allocated,
which prevents the resource from being reclaimed.

772 | Missing Release of The software does not release a resource after its
Resource after Effective effective lifetime has ended, i.e., after the resource
Lifetime is no longer needed.

773 | Missing Reference to The software does not properly maintain references
Active File Descriptor or to a file descriptor or handle, which prevents that
Handle file descriptor/handle from being reclaimed.

775 | Missing Release of File The software does not release a file descriptor or

handle after its effective lifetime has ended, i.e.,
after the file descriptor/handle is no longer needed.

4.7.3 Secondary Cluster: Faulty Resource Use

This cluster covers uses of resource in released (or otherwise incorrect) state.

This cluster has 2 discernible CWEs.

4.7.3.1

SFP15 Faulty Resource Use

Software Fault Pattern - a weakness where the code path has all of the following:

o a start statement that performs release of a resource

o an end statement that performs access to a resource and the resource is in released

state

52

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

NOTE: This software fault pattern is similar to SFP7 Faulty pointer use however this SFP
addresses the logical faults that are common to all resources including buffers, while
SFP7 addresses specific faults of buffer use.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

672 | Use of a Resource after The software fails to renew or discontinue the use
Expiration or Release of a resource after expiration, release or revocation.
416 | Use After Free Referencing memory after it has been freed can

cause a program to crash, use unexpected values,
or execute code.

4.7.4 Secondary Cluster: Life Cycle

This cluster covers various situations related to incorrect management of resource life
cycle. The CWEs in this cluster are all based on non-discernible properties.

Cluster “Life cycle” has 4 non-discernible CWEs.
The following table lists all non-discernible CWEs from this cluster:

664 | Improper Control of a The software does not maintain or incorrectly
Resource Through its maintains control over a resource throughout its
Lifetime lifetime of creation, use, and release.

666 | Operation on Resource in The software performs an operation on a resource
Wrong Phase of Lifetime at the wrong phase of the resource's lifecycle,

which can lead to unexpected behaviors.

675 | Duplicate Operations on The product performs the same operation on a
Resource resource two or more times, when the operation

should only be applied once.

694 | Use of Multiple Resources | The product uses multiple resources that can have
with Duplicate Identifier the same identifier, in a context in which unique

identifiers are required. This could lead to
operations on the wrong resource, or inconsistent
operations.

4.8 Primary Cluster: Path Resolution

This cluster of weaknesses relates to access to file resources using complex file names.
The weaknesses in this cluster are related to the so-called “path traversal” functionality
which is provided by most file systems where the complex file name is interpreted by the

53

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

file system using a set of implicit rules. These weaknesses are a common cause of
security vulnerabilities. The common characteristics of this cluster include:

o File resources

o File name, including special characters and their interpretation

o File identity

o Chroot jail (the mechanism to restrict interpretation of complex filenames)
o Path equivalence

Through these characteristics the “Path traversal” cluster is associated with the following
clusters:
o Tainted input (as the source of the filename or its parts, input transformation, such
as canonicalization, etc.)
o Resource management (file resource is a resource)
o Authentication (bypass by alternative name)

o Exception management

There are 51 CWE:s in this cluster. 43 CWEs in the cluster are based on discernible
properties and are covered by few software fault patterns. There are 8 non-discernible
CWEs in this cluster.

The Path Resolution cluster includes the following 3 secondary clusters:

o Path traversal — this cluster covers the majority of patterns leading to path
traversal vulnerabilities. The foot-hold of the corresponding software fault pattern
is the file access operation where the filename originates from the user input (is
“tainted”).

o Failed chroot jail — this cluster covers a specific situation related to incorrect
establishment of a chroot jail.

o Link in resource name resolution — this cluster covers situations related to the use
of symbolic links to file resources

4.8.1 Secondary Cluster: Path Traversal

This cluster covers the majority of patterns leading to path traversal vulnerabilities. The
foot-hold of the corresponding software fault pattern is the file access operation where
the filename originates from the user input (is “tainted”).

54

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This cluster has 43 CWEs. 38 CWEs in the cluster are discernible. 5 CWEs are non-
discernible.

4.8.1.1 SFP16 Path Traversal

Software Fault Pattern - a weakness where the code path has all of the following:

o a start statement that accepts input

o an end statement that opens a file using a file path (consisting of a directory name
and a filename) where the input is part of the file path and the file path is insecure

Where “insecure file path” is defined as the path of resources that are at least one
of the following:

e Resources outside of the access root
e Set of security-sensitive resources

Usually the allowed directory and/or the filename involves one or more special
characters that have a special meaning to the runtime platform, such as “/”, “\”, |//],
AN <., whitespace, ete. Usually the code between the input statement and the
end statement involves segments that perform canonicalization and filtering of allowed
file paths. The property of “insecure file path” describes various situations where these

transformations have been already applied to the user input.

Access to a file outside of the permitted set is an issue if it is not mitigated either by input
validation (which restricts the set of file paths) or by establishing a chroot jail (which
restricts the way in which the operating system traverses path).

NOTE: the property “access is to a file that is outside of the permitted set” is a complex
equation that involves the filename, the current directory and the permitted set, and is
formally defined as follows: “path starting at the given current directory allows access to

99 6

file that is outside of the permitted set”. Properties “access root”, “permitted set of

filetypes”, “permitted set of filenames” are often non-discernible, so additional input is
required to systematically resolve this equation.

NOTE: this cluster is closely associated with input transformation, such as
canonicalization and character encoding, see Primary Cluster Tainted Input. Character
encoding and canonicalization may significantly complicate resolving the “path access”
equation.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

55

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

22

Path Traversal

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize special
elements that can resolve to a location that is
outside of that directory.

23

Relative Path Traversal

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize
sequences such as ".." that can resolve to a
location that is outside of that directory.

24

Path Traversal: '../filedir’

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize "../"
sequences that can resolve to a location that is
outside of that directory.

25

Path Traversal: '/../filedir'

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize "/../"
sequences that can resolve to a location that is
outside of that directory.

26

Path Traversal:
'/dir/../filename’

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize
"/dir/../filename" sequences that can resolve to a
location that is outside of that directory.

27

Path Traversal:
'dir/../../filename’

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize
multiple internal "../" sequences that can resolve
to a location that is outside of that directory.

28

Path Traversal: ' \filedir'

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize "..\"
sequences that can resolve to a location that is
outside of that directory.

29

Path Traversal: '\..\filename'

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize
"..\filename" (leading backslash dot dot)
sequences that can resolve to a location that is
outside of that directory.

56

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

30

Path Traversal:
\dir\..\filename'

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize
"\dir\..\filename' (leading backslash dot dot)
sequences that can resolve to a location that is
outside of that directory.

31

Path Traversal:
'dir\..\..\filename'

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize
'dir\..\..\filename' (multiple internal backslash dot
dot) sequences that can resolve to a location that
is outside of that directory.

32

Path Traversal: '..." (Triple
Dot)

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize '...'
(triple dot) sequences that can resolve to a
location that is outside of that directory.

33

Path Traversal: '...." (Multiple
Dot)

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize "...."
(multiple dot) sequences that can resolve to a
location that is outside of that directory.

34

Path Traversal: '....//!

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize '....//'
(doubled dot dot slash) sequences that can resolve
to a location that is outside of that directory.

35

Path Traversal: '.../...//"

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize ".../...//"
(doubled triple dot slash) sequences that can
resolve to a location that is outside of that
directory.

36

Absolute Path Traversal

The software uses external input to construct a
pathname that should be within a restricted
directory, but it does not properly sanitize
absolute path sequences such as "/abs/path" that
can resolve to a location that is outside of that
directory.

37

Path Traversal:
'/absolute/pathname/here’

A software system that accepts input in the form
of a slash absolute path

57

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

(‘/absolute/pathname/here") without appropriate
validation can allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

38

Path Traversal:
"absolute\pathname\here'

A software system that accepts input in the form
of a backslash absolute path
(\absolute\pathname\here') without appropriate
validation can allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

39

Path Traversal: 'C:dirname'

An attacker can inject a drive letter or Windows
volume letter ('C:dirname') into a software system
to potentially redirect access to an unintended
location or arbitrary file.

40

Path Traversal:
"WUNC\share\name\'
(Windows UNC Share)

An attacker can inject a Windows UNC share
("WUNC\share\name') into a software system to
potentially redirect access to an unintended
location or arbitrary file.

42

Path Equivalence: 'filename.'
(Trailing Dot)

A software system that accepts path input in the
form of trailing dot ('filedir.") without appropriate
validation can lead to ambiguous path resolution
and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

43

Path Equivalence:
'filename...." (Multiple
Trailing Dot)

A software system that accepts path input in the
form of multiple trailing dot ('filedir....") without
appropriate validation can lead to ambiguous path
resolution and allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

44

Path Equivalence: 'file.name'
(Internal Dot)

A software system that accepts path input in the
form of internal dot ('file.ordir") without
appropriate validation can lead to ambiguous path
resolution and allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

45

Path Equivalence:
'file...name' (Multiple
Internal Dot)

A software system that accepts path input in the
form of multiple internal dot ('file...dir") without
appropriate validation can lead to ambiguous path
resolution and allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

58

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

46

Path Equivalence: 'filename '
(Trailing Space)

A software system that accepts path input in the
form of trailing space ('filedir ") without
appropriate validation can lead to ambiguous path
resolution and allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

47

Path Equivalence: ' filename
(Leading Space)

A software system that accepts path input in the
form of leading space (' filedir') without
appropriate validation can lead to ambiguous path
resolution and allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

48

Path Equivalence: 'file name'
(Internal Whitespace)

A software system that accepts path input in the
form of internal space ('file(SPACE)name')
without appropriate validation can lead to
ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations
or access arbitrary files.

49

Path Equivalence: 'filename/'
(Trailing Slash)

A software system that accepts path input in the
form of trailing slash ('filedir/") without
appropriate validation can lead to ambiguous path
resolution and allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

50

Path Equivalence:
'//multiple/leading/slash’

A software system that accepts path input in the
form of multiple leading slash
(‘//multiple/leading/slash’) without appropriate
validation can lead to ambiguous path resolution
and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

51

Path Equivalence:
'/multiple//internal/slash’

A software system that accepts path input in the
form of multiple internal slash
(‘/multiple//internal/slash/") without appropriate
validation can lead to ambiguous path resolution
and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

52

Path Equivalence:
'/multiple/trailing/slash//"

A software system that accepts path input in the
form of multiple trailing slash
(‘/multiple/trailing/slash//") without appropriate
validation can lead to ambiguous path resolution
and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

59

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

53

Path Equivalence:
"multiple\\internal\backslash'

A software system that accepts path input in the
form of multiple internal backslash
("\multiple\trailing\\slash') without appropriate
validation can lead to ambiguous path resolution
and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

54

Path Equivalence: 'filedir\
(Trailing Backslash)

A software system that accepts path input in the
form of trailing backslash ('filedir\") without
appropriate validation can lead to ambiguous path
resolution and allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

55

Path Equivalence: '/./'
(Single Dot Directory)

A software system that accepts path input in the
form of single dot directory exploit ('/./') without
appropriate validation can lead to ambiguous path
resolution and allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

56

Path Equivalence: 'filedir*'
(Wildcard)

A software system that accepts path input in the
form of asterisk wildcard ('filedir*") without
appropriate validation can lead to ambiguous path
resolution and allow an attacker to traverse the
file system to unintended locations or access
arbitrary files.

57

Path Equivalence:
'fakedir/../realdir/filename’

The software contains protection mechanisms to
restrict access to 'realdir/filename’, but it
constructs pathnames using external input in the
form of 'fakedir/../realdir/filename' that are not
handled by those mechanisms. This allows
attackers to perform unauthorized actions against
the targeted file.

58

Path Equivalence: Windows
8.3 Filename

The software contains a protection mechanism
that restricts access to a long filename on a
Windows operating system, but the software does
not properly restrict access to the equivalent short
"8.3" filename.

67

Improper Handling of
Windows Device Names

The software constructs pathnames from user
input, but it does not handle or incorrectly handles
a pathname containing a Windows device name
such as AUX or CON. This typically leads to
denial of service or an information leak when the
application attempts to process the pathname as a

60

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

regular file.

73

External Control of File
Name or Path

The software allows user input to control or
influence paths that are used in file system
operations.

The following table lists all non-discernible CWE:s in this cluster:

41 | Improper Resolution of The system or application is vulnerable to file

Path Equivalence system contents disclosure through path
equivalence. Path equivalence involves the use of
special characters in file and directory names. The
associated manipulations are intended to generate
multiple names for the same object.

66 | Improper Handling of File | The product does not properly handle a file name
Names that Identify Virtual | that identifies a "virtual" resource that is not
Resources directly specified within the directory that is

associated with the file name, causing the product
to perform file-based operations on a resource that
is not a file.

72 | Improper Handling of The software does not properly handle special
Apple HFS+ Alternate paths that may identify the data or resource fork of
Data Stream Path a file on the HFS+ file system.

428 | Unquoted Search Path or The product uses a search path that contains an
Element unquoted element, in which the element contains

whitespace or other separators. This can cause the
product to access resources in a parent path.

706 | Use of Incorrectly- The software uses a name or reference to access a

Resolved Name or
Reference

resource, but the name/reference resolves to a
resource that is outside of the intended control
sphere.

4.8.2 Secondary Cluster: Failed Chroot Jail

This cluster covers a specific situation related to incorrect establishment of a chroot jail.

This cluster has 1 discernible CWE.

4.8.2.1

SFP17 Failed Chroot Jail

Software Fault Pattern — a weakness where the code path has all of the following:

o a start statement that has at least one of the following

61

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o performs a chroot or
o performs a chdir; and

o an end statement that opens a file where chroot is activated and the current
working directory is outside of the chroot jail

The start statement for the code path is property-driven.

Property: chroot jail status. This property is computed based on the calls to chroot and
chdir (as they can occur in any order along the code path). Chroot jail is established when
there exists D, such as the chroot call to D has been made and chdir to D has been made,
possibly using a relative path. In particular, chdir to D before chroot to D or chdir to “/”
after the chroot to D can be made. Chroot jail is failed when a call to chroot has been
made, but no call to chdir has been made either before or after the call to chroot. Other
more complex situations may be possible, all of which resulting in the situation when the
current working directory is outside of the chroot jail. Chroot jail is inactive, when no call
to chroot has been made, regardless of calls to chdir.

NOTE: the “chroot jail” is only interesting for a filename injection, where the filename is
based on the user input as it attempts to mitigate path resolution issues

NOTE: also need to check that privileges are dropped (setuid is set to non-zero), because
chroot can be only executed with root privilege (see related software fault pattern
Privilege, CWE 272).

The following table lists all discernible CWEs that contribute to this software fault
pattern:

243 | Failure to Change Working | The program uses the chroot() system call to create
Directory in chroot Jail a jail, but does not change the working directory
afterward. This does not prevent access to files
outside of the jail.

4.8.3 Secondary Cluster: Link in Resource Name Resolution

This cluster covers situations related to the use of symbolic links to file resources.

This cluster has 7 CWEs. 4 CWEs in the cluster are discernible. 3 CWEs are non-
discernible.

4.8.3.1 SFP18 Link in Resource Name Resolution

Software Fault Pattern - a weakness where the code path has all of the following:

o A start statement that accepts input

62

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o an end statement that opens a file using a file path where the file path is not link-
sanitized

o where “no link sanitized” is defined as exactly one of the following:
e check for link not performed
e check for link does not cover every segment in the file path

The open statement that occurs on the condition branch of the link check validates against
links.

This is supported by a knowledge base facts to find statement that open files and
statements that perform link check, as well as how to determine the conditional branch of
such statement.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

59 | Improper Link Resolution | The software attempts to access a file based on the
Before File Access ('Link filename, but it does not properly prevent that
Following') filename from identifying a link or shortcut that
resolves to an unintended resource.

62 | UNIX Hard Link The software, when opening a file or directory,
does not sufficiently account for when the name is
associated with a hard link to a target that is
outside of the intended control sphere. This could
allow an attacker to cause the software to operate
on unauthorized files.

64 | Windows Shortcut The software, when opening a file or directory,
Following (.LNK) does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside
of the intended control sphere. This could allow an
attacker to cause the software to operate on
unauthorized files.

65 | Windows Hard Link The software, when opening a file or directory,
does not sufficiently handle when the name is
associated with a hard link to a target that is
outside of the intended control sphere. This could
allow an attacker to cause the software to operate
on unauthorized files.

The following table lists all non-discernible CWE:s in this cluster:
63

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

71 | Apple .DS_Store' Software operating in a MAC OS environment,
where .DS_Store is in effect, must carefully
manage hard links, otherwise an attacker may be
able to leverage a hard link from .DS_Store to
overwrite arbitrary files and gain privileges.

386 | Symbolic Name not A constant symbolic reference to an object is used,

Mapping to Correct Object | even though the reference can resolve to a different
object over time.

610 | Externally Controlled The product uses an externally controlled name or

Reference to a Resource in | reference that resolves to a resource that is outside
Another Sphere of the intended control sphere.

4.9 Primary Cluster: Synchronization

This cluster of weaknesses relates to the use of shared resources. Shared resources are
accessed by concurrent processes or threads, or any other concurrent computations or
external actors. The common characteristics of this cluster include:

o Shared resource and its identity

o

o

(@]

(@]

Shared resource access
Locks and their identity
Critical regions

Locking issues

Lock acquisition operations
Lock release operations
Guarded regions

Race condition window

Through these characteristics this cluster is related to the following other clusters:

o

o

o

Resource management
Memory access

Exception management

64

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This cluster contains 22 CWEs. 17 CWE:s are described using discernible properties and
are covered by few software fault patterns. There are also 4 non-discernible CWEs.

The Synchronization cluster includes the following 4 secondary clusters:

s. Missing lock — this scenario covers the majority of the synchronization issues
where there is no lock guarding a shared resource access (a critical region). This
common issue with these situations is the absence of a direct foot-hold.

t. Race condition window — this cluster cover common scenarios related to
sequences of unmediated accesses to shared resource or to externally controlled
resources during which the resource can change state. Although common to both
“missing lock” and “unchecked status condition” situation, this scenario has a
specific foot-hold.

u. Multiple locks/unlocks - this scenario covers several common locking issues
related to the presence of multiple lock operations (lock acquisition or lock
release). The foot-hold of this scenario is a lock operation.

v. Unrestricted lock — this scenario covers a specific locking issue related to a
potentially incorrect lock acquisition where the lock is externally controlled and
the lock acquisition does not define an alternate flow of control.

4.9.1 Secondary Cluster: Missing Lock

This scenario covers the majority of the synchronization issues where there is no lock
guarding a shared resource access (a critical region). This common issue with these
situations is the absence of a direct foot-hold.

This cluster has 13 CWEs. 10 CWEs in the cluster are discernible. 3 CWESs are non-
discernible.

4.9.1.1 SFP19 Missing lock
Software Fault Pattern - a weakness where the code path has all of the following:
o an end statement that accesses a shared entity and the entity is improperly
synchronized
Where shared entity is exactly one of the following:

o Resource of a particular resource type
o Shared data (including static variables) of a particular resource type.

Where the “improper synchronization” is defined as the situation where there
does not exist any lock that synchronizes the shared entity along the given code
path or when locks are not adequate.

65

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

NOTE: The difference between a resource and shared data is that a resource (a KDM
term) is accessed through a platform specific API while shared data is accessed through
regular data access actions. A data item can be shared between multiple threads or
processes. For this reason we separate memory-related software fault patterns from
resource-related software fault patterns. Here the improper synchronization software fault
pattern addresses both resources and shared data items because both situations use the
same synchronization mechanism.

NOTE: “Race condition in switch” is a trivial case of “Missing lock”, where the shared
entity occurs in switch condition.

This software fault pattern is supported by the following knowledge base facts:

<platform> <resource> lock <api> (this is an extension to the “exception management”
facts; for locks we need to know the explicit states “locked/unlocked” and “no
lock/multiple locks”

The start statement performs locking of the resource (this starts property propagation);
this is similar to memory access where we track a certain pointer to a buffer, here
however we need to find any lock along the code path as there is no data flow relation
between the shared resource and the lock resource; such relation needs to be established
via control flow; the lock resource protects the shared resource)

Searching for “no lock” commences from the shared resource and proceeds upwards until
the first lock is found, at which point the problem is dismissed. When the end of the code
path is reached, the problem is flagged.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

364 | Signal Handler Race Race conditions occur frequently in signal
Condition handlers, since they are asynchronous actions.
These race conditions may have any number of
root-causes and symptoms.

365 | Race Condition in Switch The code contains a switch statement in which the
switched variable can be modified while the switch
is still executing, resulting in unexpected behavior.

366 | Race Condition within a If two threads of execution use a resource
Thread simultaneously, there exists the possibility that
resources may be used while invalid, in turn
making the state of execution undefined.

413 | Insufficient Resource A product does not sufficiently lock resources, in a
Locking way that either (1) allows an attacker to
simultaneously access those resources, or (2)
causes other errors that lead to a resultant
weakness.

66

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

414 | Missing Lock Check A product does not check to see if a lock is present
before performing sensitive operations on a
resource.

543 | Use of Singleton Pattern in | The use of a singleton pattern may not be thread-

a Non-thread-safe Manner | safe.
567 | Unsynchronized Access to | The product does not properly synchronize shared
Shared Data data, such as static variables across threads, which
can lead to undefined behavior and unpredictable
data changes.

609 | Double-Checked Locking | The program uses double-checked locking to
access a resource without the overhead of explicit
synchronization, but the locking is insufficient.

662 | Insufficient The software attempts to use a shared resource in

Synchronization an exclusive manner, but fails to prevent use by
another thread or process.

667 | Insufficient Locking The software does not properly acquire a lock on a
resource, leading to unexpected resource state
changes and behaviors.

The following table lists the non-discernible CWEs in this cluster:

Function in an
Unsynchronized Context

368 | Context Switching Race A product performs a series of non-atomic actions
Condition to switch between contexts that cross privilege or
other security boundaries, but a race condition
allows an attacker to modify or misrepresent the
product's behavior during the switch.
373 | State Synchronization State synchronization refers to a set of flaws
Error involving contradictory states of execution in a
process which result in undefined behavior.
663 | Use of a Non-reentrant The software calls a non-reentrant function in a

context where a competing thread may have an
opportunity to call the same function or otherwise
influence its state.

4.9.2 Secondary Cluster: Race Condition Window

This cluster cover common scenarios related to sequences of unmediated accesses to
shared resource or to externally controlled resources during which the resource can
change state. Although common to both “Missing lock™ and “Unchecked status
condition”, this scenario has a specific foot-hold.

67

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This cluster has 5 CWEs. 4 CWEs in the cluster are discernible. 1 CWE is non-
discernible.

49.2.1 SFP20 Race Condition Window

Software Fault Pattern - a weakness where the code path has all of the following:

o a start statement that checks the status of a resource

o an end statement that performs access to the same resource where the resource
access occurs on the conditional branch of start statement and the start statement
is not atomic

This weakness identifies a window in the code of a single thread or process where access
is made to a resource which is known to be externally accessible by other actors. The
state of the resource may change between the two accesses in such a way that the thread
finds itself in an unexpected state.

NOTE: related software fault patterns are exception management, resource management
and race condition in switch and unconstrained lock

The search commences from the resource access that does not include an atomic status
check. We either find a non-atomic status check, in which case we flag an “Improper
mediation” problem, or we discover that there is no status check, which should be another
problem.

NOTE: CWE does not include entries to flag the missing status check situations.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

363 | Race Condition Enabling The software checks the status of a file or directory
Link Following before accessing it, which produces a race
condition in which the file can be replaced with a
link before the access is performed, causing the
software to access the wrong file.

367 | Time-of-check Time-of- The software checks the state of a resource before
use (TOCTOU) Race using that resource, but the resource's state can
Condition change between the check and the use in a way that

invalidates the results of the check. This can cause
the software to perform invalid actions when the
resource is in an unexpected state.

370 | Missing Check for The software does not check the revocation status
Certificate Revocation of a certificate after its initial revocation check,
after Initial Check which can cause the software to perform privileged

68

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

actions even after the certificate is revoked at a

later time.
638 | Failure to Use Complete The software does not perform access checks on a
Mediation resource every time the resource is accessed by an

entity, which can create resultant weaknesses if that
entity's rights or privileges change over time.

The following table lists all non-discernible CWE:s in this cluster:

362 | Race Condition The code requires that certain state should not be
modified between two operations, but a timing
window exists in which the state can be modified
by an unexpected actor or process.

4.9.3 Secondary Cluster: Multiple Locks/Unlocks

This scenario covers several common locking issues related to the presence of multiple
lock operations (lock acquisition or lock release). The foot-hold of this scenario is a lock
operation.

This cluster has 3 discernible CWE.

4.9.3.1 SFP21 Multiple Locks/Unlocks

Software Fault Pattern - a weakness where the code path has all of the following:
o a start statement that performs call to change resources locking state (lock or

unlock of a resource)

o an end statement that performs the call of the same locking state that the resource
is already in
NOTEIT: the “resource is in unlocked state” is defined as follows:

- for a binary lock resource: the lock has not been acquired or the lock has
been acquired and has been released

- for a counting lock resource: the lock has not been acquired or the lock has
been acquired with a count and has been released count times
the “resource is in locked state is defined as follows:

- for a binary lock resource: the lock has been acquired and has not been
released

69

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

- for a counting lock resource: the lock has been acquired with a count and
has been released less than count times

NOTE2: CWE does not have an entry which describes a situation where there is a
missing unlock. This is partly covered by a multiple lock situation, where there is a
loopback path to the original lock statement after the access to the shared resource (the
critical section). This can be described as: L=lock->critical section->L

Multiple locks also describe a different case: LL=lock->lock->critical section and its
variations.

However this does not cover a trivial case of: LS=lock-> critical section-> stop (without
a loopback).

Searching for multiple locks on a shared resource requires a different search: not only do
we need to find the first lock going up from the shared resource, but the second, etc.
Therefore multiple locks is defined as a separate software fault pattern, where the end
statement is a lock; the search then becomes the same as for “no lock” — we need to find
the first lock to flag the problem, or to hit the end of the code path to dismiss the
problem. When we hit the “unlock” we also dismiss the problem and stop the search.

A lock synchronizes a resource (such as a shared resource or another lock) if the resource
access occurs on the synchronized branch of the lock.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

764 | Multiple Locks of a The software locks a critical resource more times
Critical Resource than intended, leading to an unexpected state in the
system.
765 | Multiple Unlocks of a The software unlocks a critical resource more times
Critical Resource than intended, leading to an unexpected state in the
system.
585 | Empty Synchronized The software contains an empty synchronized
Block block.

4.9.4 Secondary Cluster: Unrestricted Lock

This scenario covers a specific locking issue related to a potentially incorrect lock
acquisition where the lock is externally controlled and the lock acquisition does not
define an alternate flow of control.

This cluster has 1 discernible CWE.
49.4.1 SFP22 Unrestricted Lock

Software Fault Pattern - a weakness where the code path has all of the following:

70

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o an end statement that performs lock of a resource and the resource is externally
accessible and there is no alternative flow (the flow will be stuck if the resource
becomes locked externally)

The following table lists all discernible CWE:s in this cluster:

412 | Unrestricted Lock on The software properly checks for the existence of a
Critical Resource lock on a critical resource, but the lock can be
externally controlled or influenced by an actor that
is outside of the intended sphere of control.

4.10 Primary Cluster: Information Leak

This cluster of weaknesses relates to the export of sensitive information from an
application and several related issues. The common characteristics of this cluster include:

o Sensitive data (defined as data which flow from sensitive operations or flows into
sensitive operations as the key parameter. “Sensitive” is the role that a data
element plays in a certain context. We can know this role based on the APIs that
are involved n producing/consuming/transforming the data element. If a data
element was passed to a password management function, it can be assumed to be
a password. If a data element is passed to a function that is known to require a
private key — it is a private key.)

o Information export operations (including storing, logging, releasing as an error
message, releasing as a debug message, as well as other exposures)

o State disclosure

o Temporary file and their names

o Data in motion

o Data at rest and their configuration
o Output channels

o Buffer cleanup

Through these characteristics this cluster is associated with the following other clusters:

o Memory management

o Channel (output channel)

71

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

(©)

©)

o

Synchronization
Resource management

Exception management

This cluster contains 96 CWEs. Most CWEs are described using non-discernible
properties, so only 37 contribute to software fault patterns. There are 57 non-discernible
CWE:s in this cluster.

The Information Leak cluster includes the following 5 secondary clusters:

o

Exposed data - this cluster covers various situations related to the data motion,
data at rest etc., which leads to information leaks, where there is corresponding
code with sufficient foot-hold for a white-box description

Insecure session management-— this cluster covers several scenarios related to
information leaks between sessions; CWEs in this cluster do not have sufficient
white-box content

Other exposures — this cluster covers various miscellaneous scenarios leading to
information leak, not covered by the previous clusters. CWEs in this cluster do
not have sufficient white-box content.

State disclosure — this cluster covers various situations of state disclosure, which
releases the knowledge of some aspects of the internal state of the application.
CWE:s in this cluster do not have sufficient white-box content

Exposure through temporary files - this cluster covers scenarios related to
temporary files management, in particular to their names. CWE:s in this cluster do
not have sufficient white-box content

4.10.1 Secondary Cluster Exposed Data

This cluster contains 76 CWEs. Most CWEs are described using non-discernible
properties, so only 38 contribute to software fault patterns. There are 38 non-discernible
CWEs in this cluster.

This cluster is further subdivided into the following 8 groups:

@)

Exposed data in motion - this group covers various situations related to the data
motion, which leads to information leaks, where there is corresponding code with
sufficient foot-hold for a white-box description

72

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Exposure through storing — this group covers various situations related to the data
at rest, which leads to information leaks, where there is corresponding code with
sufficient foot-hold for a white-box description

o Exposed data at rest - this group covers various situations related to the data at
rest, which leads to information leaks, as there is no corresponding code or no
sufficient foot-hold for a white-box description

o Exposure through logging - this group covers various situations related to the data
in use, which leads to information leaks through logging, where there is
corresponding code with sufficient foot-hold for a white-box description

o Exposure through debug message - this group covers various situations related to
the data in use, which leads to information leaks through debug messages, where
there is corresponding code with sufficient foot-hold for a white-box description

o Exposure through error message- this group covers various situations related to
the data in use, which leads to information leaks through error messages, where
there is corresponding code with sufficient foot-hold for a white-box description

o Inappropriate cleanup — this group covers several buffer cleanup weaknesses

o Programmatic exposures of data — this group covers several scenarios related to
miscellaneous constructs leading to information release

4.10.1.1 SFP23 Exposed Data
Software Fault Pattern - a weakness where the code path has all of the following:

o an end statement performs moving data where the data is sensitive and the data
is inadequately protected

Where “inadequately protected data” is defined as exactly one of the following:
e Data that is not encrypted (in cleartext, in plaintext)
e data that is not sanitized

Where “sensitive data” is defined as used in APIs that are intended for handling

sensitive data (for example passwords API)

4.10.1.2 Exposed Data in Motion

73

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This group defines various explicit “data transmitting” operations that result in releasing
information; each operation corresponds to an API call with the data value being released
as the key parameter.

This group has 8 CWEs. 3 CWEs in the group are discernible. 5 CWEs are non-
discernible.

The following table lists all discernible CWEs in this group:

311 | Failure to Encrypt The failure to encrypt data passes up the
Sensitive Data guarantees of confidentiality, integrity, and
accountability that properly implemented
encryption conveys.
319 | Cleartext Transmission of | The software transmits sensitive or security-critical
Sensitive Information data in cleartext in a communication channel that
can be sniffed by unauthorized actors.
523 | Unprotected Transport of Login pages not using adequate measures to

Credentials

protect the user name and password while they are
in transit from the client to the server.

The following table lists all non-discernible CWEs in this group:

5 J2EE Misconfiguration: Information sent over a network can be
Data Transmission Without | compromised while in transit. An attacker may be
Encryption able to read/modify the contents if the data are sent
in plaintext or are weakly encrypted.
200 | Information leak An Information leak is the intentional or
(Information Disclosure) unintentional disclosure of information to an actor
that is not explicitly authorized to have access to
that information.
201 | Information leak Through | The accidental leaking of sensitive information
Sent Data through sent data refers to the transmission of data
which are either sensitive in and of itself or useful
in the further exploitation of the system through
standard data channels.
212 | Cross-boundary Cleansing | The software does not properly remove sensitive
Information leak data from a source when preparing it for, or
transferring it to, an untrusted destination.
213 | Intended Information leak | A product's design or configuration explicitly

requires the publication of information that could
be regarded as sensitive by an administrator.

74

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

NOTE: CWE 5 and 319 are very similar: both make a claim about plaintext/cleartext; 5
makes additional claim about weak encryption; 5 mentions “a network that can be
compromised” while 319 mentions “communication channel that can be sniffed by
unauthorized actors.”; 5 mentions “information”, while 319 mentions “sensitive or
security-critical data”

201 is also similar to 5 and 319: it mentions “sensitive information”

212 is a different facet of the same situation: “does not properly remove sensitive
information when transferring to an untrusted party”.

4.10.1.3 Exposure Through Storing

This group defines various situations related to the data at rest of the software system,
where explicit “data storing” operations are involved; each operation correspond to an
API call with the data value being released as the key parameter.

This group has 13 CWEs. There are 8 discernible CWEs in this group and 5 non-
discernible ones.

The following table lists all discernible CWEs in this group:

256 | Plaintext Storage of a Storing a password in plaintext may result in a
Password system compromise.

257 | Storing Passwords in a The storage of passwords in a recoverable format
Recoverable Format makes them subject to password reuse attacks by

malicious users. If a system administrator can
recover a password directly, or use a brute force
search on the available information, the
administrator can use the password on other

accounts.
312 | Cleartext Storage of The application stores sensitive information in
Sensitive Information cleartext within a resource that might be accessible

to another control sphere, when the information
should be encrypted or otherwise protected.

313 | Plaintext Storage in a File | Storing sensitive data in plaintext in a file, or on
or on Disk disk, makes the data more easily accessible than if
encrypted. This significantly lowers the difficulty
of exploitation by attackers.

314 | Plaintext Storage in the Storing sensitive data in plaintext in the registry
Registry makes the data more easily accessible than if
encrypted. This significantly lowers the difficulty
of exploitation by attackers.

75

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

315

Plaintext Storage in a
Cookie

Storing sensitive data in plaintext in a cookie
makes the data more easily accessible than if
encrypted. This significantly lowers the difficulty
of exploitation by attackers.

317

Plaintext Storage in GUI

Storing sensitive data in plaintext within the GUI
makes the data more easily accessible than if
encrypted. This significantly lowers the difficulty
of exploitation by attackers.

642

External Control of Critical
State Data

The software stores security-critical state
information about its users, or the software itself,
in a location that is accessible to unauthorized
actors.

The following table lists all non-discernible CWEs in this group:

13 | ASP.NET Storing a plaintext password in a configuration file
Misconfiguration: allows anyone who can read the file access to the
Password in Configuration | password-protected resource making them an easy
File target for attackers.

260 | Password in Configuration | The software stores a password in a configuration
File file that might be accessible to actors who do not

know the password.

522 | Insufficiently Protected This weakness occurs when the application
Credentials transmits or stores authentication credentials and

uses an insecure method that is susceptible to
unauthorized interception and/or retrieval.

539 | Information leak Through | Persistent cookies are cookies that are stored on the
Persistent Cookies browser's hard drive. This can cause security and

privacy issues depending on the information stored
in the cookie and how it is accessed.

555 | J2EE Misconfiguration: The J2EE application stores a plaintext password
Plaintext Password in in a configuration file.

Configuration File

4.10.1.4 Exposed Data at Rest

This group covers various situations related to data at rest of the software system which
leads to information leaks, as there is no corresponding code or no sufficient foot-hold for
a white-box description.

76

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This group has 19 CWEs. 3 CWEs in the group are discernible. 16 CWEs are non-
discernible.

The following table lists all discernible CWEs that contribute to this group:

533 | Information leak Through | A server.log file was found. This can give
Server Log Files information on whatever application left the file.
Usually this can give full path names and system
information, and sometimes usernames and
passwords.

534 | Information leak Through | The application does not sufficiently restrict access
Debug Log Files to a log file that is used for debugging.

542 | Information leak Through | The application fails to protect or delete a log file
Cleanup Log Files related to cleanup.

The following table lists all non-discernible CWE:s in this group:

219 | Sensitive Data Under Web | The application stores sensitive data under the web

Root document root with insufficient access control,
which might make it accessible to untrusted
parties.

220 | Sensitive Data Under FTP | The application stores sensitive data under the FTP

Root document root with insufficient access control,
which might make it accessible to untrusted
parties.

318 | Plaintext Storage in Sensitive information should not be stored in

Executable plaintext in an executable. Attackers can reverse
engineer a binary code to obtain secret data.

433 | Unparsed Raw Web The software stores raw content or supporting code

Content Delivery under the web document root with an extension

that is not specifically handled by the server,
resulting in an Information leak.

527 | Information leak Through Information contained within a CVS directory left
CVS Repository as a subdirectory on a webserver (such as
usernames, filenames, path root and IP addresses)
could be recovered by an attacker and used for
malicious purposes.

528 | Information leak Through | The application generates a core dump file in a
Core Dump Files directory that is accessible to parties outside of the
intended control sphere.

77

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

529 | Information leak Through These files allow the attacker to know the setup of
Access Control List Files the security Access Control Lists. This will give
the attacker information that may allow the
attacker to bypass the security of the site.

530 | Information leak Through | Often, old files are renamed with an extension such

Backup (.~bk) Files as .~bk to distinguish them from production files.
The source code for old files that have been
renamed in this manner and left in the webroot can
often be retrieved.

538 | File and Directory Weaknesses in this category are related to

Information leaks Information leaks in files and directories.

540 | Information leak Through Source code on a web server often contains

Source Code sensitive information and should generally not be
accessible to users.

541 | Information leak Through | If an include file source is accessible, the file can

Include Source Code contain usernames and passwords, as well as
sensitive information pertaining to the application
and system.

546 | Suspicious Comment The code contains comments that suggest the
presence of bugs, incomplete functionality, or
weaknesses.

548 | Information leak Through A directory listing is inappropriately exposed,

Directory Listing yielding potentially sensitive information to
attackers.

552 | Files or Directories Files or directories are accessible in the

Accessible to External environment that should not be.

Parties

612 | Information leak Through | The product performs an indexing routine against

Indexing of Private Data private documents, but does not sufficiently verify
that the actors who can access the index also have
the privileges to access the private documents.

615 | Information leak Through While adding general comments is very useful,

Comments

some programmers tend to leave important data,
such as: filenames related to the web application,
old links or links which were not meant to be
browsed by users, old code fragments, etc.

78

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.10.1.5 Exposure Through Logging

This group defines various explicit “logging” operations that result in releasing
information; each operation correspond to an API call with the data value being released
as the key parameter.

This group has 2 CWEs. All CWEs in the group are discernible.

The following table lists all discernible CWEs in this group:

117 | Improper Output The software does not properly sanitize or
Sanitization for Logs incorrectly sanitizes output that is written to logs.
532 | Information leak Through | Information written to log files can be of a

Log Files sensitive nature and give valuable guidance to an

attacker.

4.10.1.6 Exposure Through Debug Message

This group defines various scenarios that result in releasing information through debug
messages; where each debug message is released by a specific operation corresponding to
an API call with the data value being released as the key parameter.

This group has 3 CWEs. 2 CWE:s in the group are discernible. There is 1 non-discernible
CWE in this group.

The following table lists all discernible CWEs in this group:

Data

215 | Information leak Through | The application contains debugging code that can
Debug Information leak sensitive information to untrusted parties.
497 | Information leak of System | Revealing system data or debugging information

helps an adversary learn about the system and form
an attack plan.

The following table lists all non-discernible CWEs in this group:

11 | ASP.NET Debugging messages help attackers learn about the
Misconfiguration: Creating | system and plan a form of attack.
Debug Binary

4.10.1.7 Exposure Through Error Message

This group defines various scenarios that result in releasing information through error
messages; where each error message is released by a specific operation corresponding to
an API call with the data value being released as the key parameter.

79

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This group has 10 CWEs. 2 CWE:s in the group are discernible. § CWEs are non-
discernible.

The following table lists all discernible CWEs in this group:

209 | Error Message Information | The software generates an error message that
leak includes sensitive information about its
environment, users, or associated data.

210 | Product-Generated Error The software identifies an error condition and

Message Information leak

creates its own diagnostic or error messages that
contain sensitive information.

The following table lists all non-discernible CWEs in this group:

7 J2EE Misconfiguration: The default error page of a web application should
Missing Custom Error Page | not display sensitive information about the

software system.

12 | ASP.NET An ASP NET application must enable custom
Misconfiguration: Missing | error pages in order to prevent attackers from
Custom Error Page mining information from the framework's built-in

responses.

211 | Product-External Error The software performs an operation that triggers an
Message Information leak | external diagnostic or error message that is not

directly generated by the software, such as an error
generated by the programming language interpreter
that the software uses. The error can contain
sensitive system information.

535 | Information leak Through | A command shell error message indicates that
Shell Error Message there exists an unhandled exception in the web

application code. In many cases, an attacker can
leverage the conditions that cause these errors in
order to gain unauthorized access to the system.

536 | Information leak Through | A servlet error message indicates that there exists
Servlet Runtime Error an unhandled exception in your web application
Message code and may provide useful information to an

attacker.

537 | Information leak Through | In many cases, an attacker can leverage the
Java Runtime Error conditions that cause unhandled exception errors in
Message order to gain unauthorized access to the system.

550 | Information leak Through | Certain conditions, such as network failure, will

Server Error Message

cause a server error message to be displayed.

80

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

756

Missing Custom Error Page

The software fails to return custom error pages to
the user, possibly resulting in an information leak.

4.10.1.8 Programmatic Exposures of Data

This group covers several scenarios related to miscellaneous constructs leading to
information release.

This group has 16 CWEs. 13 CWEs in the group are discernible. 3 CWEs are non-
discernible.

The following table lists all discernible CWEs that contribute to this group:

8 J2EE Misconfiguration: When an application exposes a remote interface for
Entity Bean Declared an entity bean, it might also expose methods that
Remote get or set the bean's data. These methods could be

leveraged to read sensitive information, or to
change data in ways that violate the application's
expectations, potentially leading to other
vulnerabilities.

214 | Process Environment A process is invoked with sensitive arguments,
Information leak environment variables, or other elements that can

be seen by other processes on the operating
system.

316 | Plaintext Storage in Storing sensitive data in plaintext in memory
Memory makes the data more easily accessible than if

encrypted. This significantly lowers the difficulty
of exploitation by attackers.

403 | UNIX File Descriptor Leak | A process does not close sensitive file descriptors
before invoking a child process, which allows the
child to perform unauthorized I/O operations using
those descriptors.

495 | Private Array-Typed Field | The product has a method that is declared public,
Returned From A Public but returns a reference to a private array, which
Method could then be modified in unexpected ways.

498 | Information leak through The code contains a class with sensitive data, but
Class Cloning the class is cloneable. The data can then be

accessed by cloning the class.

499 | Serializable Class The code contains a class with sensitive data, but

Containing Sensitive Data

the class does not explicitly deny serialization. The
data can be accessed by serializing the class

81

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

through another class.

501 | Trust Boundary Violation | The product mixes trusted and untrusted data in the

same data structure or structured message.

526 | Information leak Through | Environmental variables may contain sensitive
Environmental Variables information about a remote server.

591 | Sensitive Data Storage in The application stores sensitive data in memory
Improperly Locked that is not locked, or that has been incorrectly
Memory locked, which might cause the memory to be

written to swap files on disk by the virtual memory
manager. This can make the data more accessible
to external actors.

598 | Information leak Through | The web application uses the GET method to
Query Strings in GET process requests that contain sensitive information,
Request which can expose that information through the

browser's history, Referers, web logs, and other
sources.

607 | Public Static Final Field A public or protected static final field references a
References Mutable Object | mutable object, which allows the object to be

changed by malicious code, or accidentally from
another package

767 | Access to Critical Private The software defines a public method that reads or
Variable via Public Method | modifies a private variable.

374 | Mutable Objects Passed by | Sending non-cloned mutable data as an argument
Reference may result in that data being altered or deleted by

the called function, thereby putting the calling
function into an undefined state.

375 | Passing Mutable Objects to | Sending non-cloned mutable data as a return value

an Untrusted Method

may result in that data being altered or deleted by
the calling function, thereby putting the class in an
undefined state.

The following table lists all non-discernible CWEs in this group:

402 | Transmission of Private The software makes resources available to
Resources into a New untrusted parties when those resources are only
Sphere ('Resource Leak') intended to be accessed by the software.

668 | Exposure of Resource to The product exposes a resource to the wrong

Wrong Sphere

sphere, in ways that are not related to incorrectly
specified permissions.

82

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

669

Incorrect Resource
Transfer Between Spheres

The product does not properly transfer a
resource/behavior to another sphere, or improperly
imports a resource/behavior from another sphere,
in a manner that provides unintended control over
that resource.

4.10.1.9 Inappropriate Cleanup

This group covers several buffer cleanup weaknesses
This group has 3 CWEs. All CWEs in the group are discernible.

The following table lists all discernible CWEs that contribute to this group:

14 | Compiler Removal of Code | Sensitive memory is cleared according to the
to Clear Buffers source code, but compiler optimizations leave the
memory untouched when it is not read from again,
aka "dead store removal."
226 | Sensitive Information The software does not fully clear previously used
Uncleared Before Release | information in a data structure, file, or other
resource, before making that resource available to
a party in another control sphere.
244 | Failure to Clear Heap Using realloc() to resize buffers that store sensitive

Memory Before Release
('"Heap Inspection')

information can leave the sensitive information
exposed to attack, because it is not removed from
memory.

NOTE: This group is related to SFP14 Failure to release resource (CWE 459) which
addresses the situation of resource release and Cluster Incorrect Exception Behavior
(CWE 460).

4.10.2 Secondary Cluster: State Disclosure

This cluster covers various situations of state disclosure, which releases the knowledge of
some aspects of the internal state of the application. CWEs in this cluster do not have
sufficient white-box content.

This cluster has 7 non-discernible CWEs.

The following table lists all non-discernible CWE:s in this cluster:

202

Privacy Leak through Data
Queries

When trying to keep information confidential, an
attacker can often infer some of the information by
using statistics.

83

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Information leak

203 | Discrepancy Information A discrepancy Information leak is an Information

leaks leak in which the product behaves differently, or
sends different responses, in a way that reveals
security-relevant information about the state of the
product, such as whether a particular operation was
successful or not.

204 | Response Discrepancy The software provides different responses to
Information leak incoming requests in a way that allows an actor to

determine system state information that is outside
of that actor's control sphere.

205 | Behavioral Discrepancy A behavioral discrepancy Information leak occurs
Information leak when the product's actions indicate important

differences based on (1) the internal state of the
product or (2) differences from other products in
the same class.

206 | Internal Behavioral Two separate operations in a product cause the
Inconsistency Information | product to behave differently in a way that is
leak observable to an attacker and reveals security-

relevant information about the internal state of the
product, such as whether a particular operation was
successful or not.

207 | External Behavioral The software behaves differently than other
Inconsistency Information | products like it, in a way that is observable to an
leak attacker and reveals security-relevant information

about which product is being used, or its operating
state.

208 | Timing Discrepancy Two separate operations in a product require

different amounts of time to complete, in a way
that is observable to an actor and reveals security-
relevant information about the state of the product,
such as whether a particular operation was
successful or not.

4.10.3 Secondary Cluster: Exposure Through Temporary files

This cluster covers scenarios related to temporary files management, in particular to their
names. CWEs in this cluster do not have sufficient white-box content.

This cluster has 3 non-discernible CWEs.

The following table lists all non-discernible CWEs in this cluster:

84

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

377 | Insecure Temporary File Creating and using insecure temporary files can
leave application and system data vulnerable to
attack.

378 | Creation of Temporary File | Opening temporary files without appropriate

With Insecure Permissions | measures or controls can leave the file, its contents
and any function that it impacts vulnerable to
attack.

379 | Creation of Temporary File | The software creates a temporary file in a directory

in Directory with Incorrect
Permissions

whose permissions allow unintended actors to
determine the file's existence or otherwise access
that file.

4.10.4 Secondary Cluster: Other Exposures

This cluster covers various miscellaneous scenarios leading to information leak, not
covered by the previous clusters. CWEs in this cluster do not have sufficient white-box
content.

This cluster has 7 non-discernible CWEs.

The following table lists all non-discernible CWEs in this cluster:

Session Without "Secure"
Attribute

453 | Insecure Default Variable The software, by default, initializes an internal
Initialization variable with an insecure or less secure value than
is possible.
485 | Insufficient Encapsulation | The product does not sufficiently encapsulate
critical data or functionality.
487 | Reliance on Package-level | Java packages are not inherently closed; therefore,
Scope relying on them for code security is not a good
practice.
492 | Use of Inner Class Inner classes are translated into classes that are
Containing Sensitive Data | accessible at package scope and may expose code
that the programmer intended to keep private to
attackers.
525 | Information leak Through For each web page, the application should have an
Browser Caching appropriate caching policy specifying the extent to
which the page and its form fields should be
cached.
614 | Sensitive Cookie in HTTPS | The Secure attribute for sensitive cookies in

HTTPS sessions is not set, which could cause the
user agent to send those cookies in plaintext over

85

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

an HTTP session.

651

Information leak through
WSDL File

The Web services architecture may require
exposing a WSDL file that contains information on
the publicly accessible services and how callers of
these services should interact with them (e.g. what
parameters they expect and what types they
return).

4.10.5 Secondary Cluster: Insecure Session Management

This cluster covers several scenarios related to information leaks between sessions;
CWES in this cluster do not have sufficient white-box content.

This cluster has 3 non-discernible CWEs.

The following table lists all non-discernible CWEs in this cluster:

Caching

6 J2EE Misconfiguration: The J2EE application is configured to use an
Insufficient Session-ID insufficient session ID length.
Length
488 | Data Leak Between The product does not sufficiently enforce
Sessions boundaries between the states of different sessions,
causing data to be provided to, or used by, the
wrong session.
524 | Information leak Through | The application uses a cache to maintain a pool of

objects, threads, connections, pages, or passwords
to minimize the time it takes to access them or the
resources to which they connect. If implemented
improperly, these caches can allow access to
unauthorized information or cause a denial of
service vulnerability.

4.11 Primary Cluster: Tainted Input

This cluster groups weaknesses related to injection of user controlled data into various
destination commands. This cluster focuses at the data validation issues. The common

characteristics of this cluster include:

o Destination command or construct

o Data validation, special characters and their interpretation

86

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o

o

Tainted values
Channel (input channel)
Input transformation (encoding, canonicalization, etc.)

Input handling (processing complex input structures)

Through these characteristics, the Tainted Input cluster is associated to the following
other clusters:

©)

(@]

o

Risky values, Memory access (through various properties of a memory buffer
which may be destinations of the tainted values)

Path resolution (through data validation and tainted values)
Resource management

Authentication (through input handling)

Protocol errors

Exception management

This cluster contains 138 CWEs. 79 CWEs contribute to software fault patterns. 59
CWEs are non-discernible.

The Tainted Input cluster includes the following 6 secondary clusters:

o

Tainted input to command — this cluster covers various scenarios that involve data
validation and in particular the special characters for various destinations
commands

Tainted input to variable - this cluster covers scenarios where the destination of
the tainted values in not an API call, but some construct, for example, a basic
condition, a loop condition, etc.

Tainted input to environment — this cluster covers scenarios where the tainted
values affect various element of the computation environment which has an
indirect effect on the computation itself

Faulty input transformation — this cluster covers several scenarios related to the
transformation of input, such as encoding, canonicalization, etc.

Incorrect input handling — this cluster covers several scenarios related to
processing of complex input structures

87

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Composite tainted input — this cluster is introduced to describe vulnerabilities in
which user controlled input contributes to other weaknesses, for example a buffer
overflow in which the buffer length is tainted data

Tainted Input secondary clusters that have discernible properties consisting of 3 types:
Tainted Input to Command (TIC) Type, Tainted Input to Environment (TIE), and Tainted
Input to Variable (TIV).

The following sections describe the secondary clusters of “Tainted Input” and their
current status in relation to CWE:s.

4.11.1 Secondary Cluster: Tainted Input to Command

This cluster covers various scenarios that involve data validation and in particular the
special characters for various destinations commands.

This cluster has 87 CWEs. 68 CWEs in the cluster are discernible. 19 CWEs are non-
discernible.

Characteristics of Tainted Input to Command (TIC):
o Isrelated to the input data validation driven by syntax of the command that input
data contributes to and is being interpreted and executed by the platform.

“Command” is defined as a certain API call.

o Some examples of CWEs are injection data (e.g. OS injection, SQL injection,

Resource injection) and XSS
o Currently some of CWEs covering this space have 2 flaws:

o defined input data validation is mostly independent from the destination

command data that input contributes to.

o number of CWEs are focused on use of validation interface within
particular frameworks which besides describing a good practice has no
impact on assessment of input validation effectiveness (e.g., validation can
be very poor (non-effective) using recommended interface or very good
but bypassing interface)

The following tables list parameters/data elements found in CWEs that are related to

condition that forms tainted data weakness. These elements are input commands (Table
3), destination commands (Table 4) and special characters/symbols (Table 5).

88

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Table 3. Input Commands of TIC Type

Input command/component entry point

Struts and input validation framework

HTTP request

ASP.NET and input validation framework

PHP request

Upstream Component

Table 4. Destination Commands of TIC Type

Destination command

HTTP

SQL

OS

LDAP

XML

SMTP

EVAL

Table 5. Special Characters of TIC Type

Special char/sym

& <>

*005,-:$

89

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

CRLF

(132

delimiters

Record delimiters

Line delimiters

Section delimiters

Expression/command delimiters

Escape, Meta, control sequences

Comment delimiters

Macro symbols

Substitution characters

Variable name delimiters

Wildcard or matching symbols

whitespace

Paired delimiters

NULL

Multiple leading special elements

Multiple trailing special elements

Missing/additional/inconsistent special element

Table 6 lists CWE IDs in relationship to parameters/data elements (what CWE focuses
and reports)

90

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Table 6. CWEs in Relationship to Parameters of TIC Type

Row | Parameters Input Use of Destination | Validation: | Validation:
m, Cmd | Validation | Command Special Applicable
Interface Characters Design

CWE ID & Symbols | Specification

1 93; 138; 140; Y
141; 142; 143;
144; 145; 146,
147; 148; 149;
150; 151; 152;
153; 154; 155;
156; 157; 161,
162; 163; 164,
165; 641;

2 102; 103; 108; Y
104; 105; 109;
110; 554;

3 | 77;78;79; 80; Y Y Y
113; 84; 86; (incomplete
112; 601; 644 list)

4 90; 624; 74; Implied Y Mentioned
81; 82; 85; 87; but not
134; 564; 89; listed
91;611; 619;
643; 652; 77,
78:; 95; 96;

5 15; 20; 99 Implied Implied Y
(resource);
566; 621; 641;

6 83; Y Mentioned

but not
listed
Notes:

o CWEs identified in Row 1 are of no value since special characters are not provided in
the context of destination commend that are intended for

o CWEs identified in row 2 are of no value since they are focused on
recommendation/best practice to enable framework validation interface — that still
does not tell us how good validation is or if it exist only that is enabled

91

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o The only valid CWEs are those in rows 3, 4 and 5; however for completeness they
need to be expended to include list of categorized destination commands with
prohibited special characters

4.11.1.1 SFP24 Tainted Input to Command

Tainted Input to Command (TIC):
o Software Fault Pattern - A weakness where the code path has all of the following:

o a start statement that accepts input data

o an end statement that executes destination command where the input data is

part of destination command and the input data is undesirable

Where “input is undesirable” is defined exactly one of the following:

o not validated

o incorrectly validated against special characters and symbols that
trigger certain functionality during execution of destination

command (discernible) and against applicable design specification

Example of concrete parameters for a parameterized TIC SFP is shown in Table 7.

92

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Table 7. Example: Concrete Parameters for Parameterized TIC SFP

Input Command /
Component Entry
Point

HTTP

Command Line
Interface

Input Files,
Environment.
variables input...

Socket Read

RMI (as example
for component
entry point)

Any Input can
be connected to
any Destination
Command

Destination

Destination Command

Validation: Special
Characters and Symbols

Validation:
applicable
design
specification

SQL command

1. Specifically:

NUL (0x00)
BS (0x08)
TAB (0x09)
LF (0x0a)
CR (0x0d)
SUB (0Oxla)
" (0x22)
% (0x25)
' (0x27)
\ (0x5c)

(0x5f)

2. Good practice:

All other non-
alphanumerical characters

not necessary

within ASCII set of
characters
HTTP output stream, e.g., | < > " ' % ;) (& + not necessary

OutputStream::Write

OS Command, e.g.,
java.lang.Runtime

System.Diagnostics.Proc
ess.Start

exec() or passthru()

It is more platform specific,
however if we want to be
generic, we can say: All
non-alphanumerical
characters within ASCII
set of characters

not necessary

Command accessing any
resource, €.g.,
socket, file

N/A

Valid resource
id

Command that accepts
format string, e.g.,

Printf();

No validation is good for these commands —
they should be flagged regardless of validation

Distribution authorized to U.S. Government Agencies and their contractors.

93

Data subject to restrictions on the cover and notice page.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

74

Failure to Sanitize Data
into a Different Plane

The software fails to adequately filter user-
controlled input data for syntax that has control-

('Injection’) plane implications.

77 | Failure to Sanitize Data The software fails to adequately filter command
into a Control Plane (control plane) syntax from user-controlled input
('Command Injection") (data plane) and then allows potentially injected

commands to execute within its context.

78 | Failure to Preserve OS The software uses externally-supplied input to
Command Structure ('OS dynamically construct all or part of a command,
Command Injection') which is then passed to the operating system for

execution, but the software does not sufficiently
enforce which commands and arguments are
specified.

79 | Failure to Preserve Web The software does not sufficiently validate, filter,
Page Structure ('Cross-site | escape, and encode user-controllable input before
Scripting') it is placed in output that is used as a web page that

is served to other users.

80 | Improper Sanitization of The software receives input from an upstream
Script-Related HTML Tags | component, but it does not sanitize or incorrectly
in a Web Page (Basic XSS) | sanitizes special characters such as "<", ">", and

"&" that could be interpreted as web-scripting
elements when they are sent to a downstream
component that processes web pages.

81 | Improper Sanitization of The software receives input from an upstream
Script in an Error Message | component, but it does not sanitize or incorrectly
Web Page sanitizes special characters that could be

interpreted as web-scripting elements when they
are sent to an error page.

82 | Improper Sanitization of The web application does not filter or incorrectly
Script in Attributes of IMG | filters scripting elements within attributes of
Tags in a Web Page HTML IMG tags, such as the src attribute.

83 | Failure to Sanitize Script in | The software does not filter "javascript:" or other
Attributes in a Web Page URI's from dangerous attributes within tags, such

as onmouseover, onload, onerror, or style.

84 | Failure to Resolve Encoded | The web application fails to filter user-controlled
URI Schemes in a Web input for executable script disguised with URI
Page encodings.

85 | Doubled Character XSS The web application fails to filter user-controlled

94

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Manipulations

input for executable script disguised using
doubling of the involved characters.

86 | Failure to Sanitize Invalid | The software does not strip out invalid characters
Characters in Identifiers in | in the middle of tag names, URI schemes, and
Web Pages other identifiers, which are still rendered by some

web browsers that ignore the characters.

87 | Failure to Sanitize The software fails to adequately filter user-
Alternate XSS Syntax controlled input for alternate script syntax.

89 | Failure to Preserve SQL The application dynamically generates an SQL
Query Structure ('SQL query based on user input, but it does not
Injection') sufficiently prevent that input from modifying the

intended structure of the query.

90 | Failure to Sanitize Data The software does not sufficiently sanitize special
into LDAP Queries ('LDAP | elements that are used in LDAP queries or
Injection') responses, allowing attackers to modify the syntax,

contents, or commands of the LDAP query before
it is executed.

91 | XML Injection (aka Blind | The software does not properly filter or quote
XPath Injection) special characters or reserved words that are used

in XML, allowing attackers to modify the syntax,
content, or commands of the XML before it is
processed by an end system.

93 | Failure to Sanitize CRLF The software uses CRLF (carriage return line
Sequences ('CRLF feeds) as a special element, e.g. to separate lines or
Injection') records, but it does not properly sanitize CRLF

sequences from inputs.

95 | Improper Sanitization of The software receives input from an upstream
Directives in Dynamically | component, but it does not sanitize or incorrectly
Evaluated Code ('Eval sanitizes code syntax before using the input in a
Injection') dynamic evaluation call (e.g. "eval").

96 | Improper Sanitization of The software receives input from an upstream
Directives in Statically component, but it does not sanitize or incorrectly
Saved Code ('Static Code sanitizes code syntax before inserting the input into
Injection') an executable resource, such as a library,

configuration file, or template.

99 | Improper Sanitization of The software receives input from an upstream

Resource Identifiers
('Resource Injection’)

component, but it does not restrict or incorrectly
restricts the input before it is used as an identifier
for a resource that may be outside the intended
sphere of control.

95

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

102 | Struts: Duplicate The application uses multiple validation forms

Validation Forms with the same name, which might cause the Struts
Validator to validate a form that the programmer
does not expect.

103 | Struts: Incomplete The application has a validator form that either
validate() Method fails to define a validate() method, or defines a
Definition validate() method but fails to call super.validate().

104 | Struts: Form Bean Does If a form bean does not extend an ActionForm
Not Extend Validation subclass of the Validator framework, it can expose
Class the application to other weaknesses related to

insufficient input validation.

105 | Struts: Form Field Without | The application has a form field that is not
Validator validated by a corresponding validation form,

which can introduce other weaknesses related to
insufficient input validation.

108 | Struts: Unvalidated Action | Every Action Form must have a corresponding
Form validation form.

109 | Struts: Validator Turned Automatic filtering via a Struts bean has been
Off turned off, which disables the Struts Validator and

custom validation logic. This exposes the
application to other weaknesses related to
insufficient input validation.

110 | Struts: Validator Without Validation fields that do not appear in forms they
Form Field are associated with indicate that the validation

logic is out of date.

112 | Missing XML Validation Failure to enable validation when parsing XML
gives an attacker the opportunity to supply
malicious input.

113 | Failure to Sanitize CRLF The software fails to adequately filter HTTP

Sequences in HTTP headers for CR and LF characters.
Headers (‘(HTTP Response
Splitting")

130 | Improper handling of The software does not handle or incorrectly
Length Parameter handles incoming data that contains a length or
Inconsistency size field that is inconsistent with the actual length

of the associated data.

134 | Uncontrolled Format String | The software uses externally-controlled format

strings in printf-style functions, which can lead to
buffer overflows or data representation problems.

96

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

138 | Improper Sanitization of The software receives input from an upstream

Special Elements component, but it does not sanitize or incorrectly
sanitizes special elements that could be interpreted
as control elements when they are sent to a
downstream component.

140 | Failure to Sanitize The software does not properly sanitize delimiters.
Delimiters

141 | Failure to Sanitize Parameter delimiters injected into an application
Parameter/Argument can be used to compromise a system. As data is
Delimiters parsed, an injected/absent/malformed delimiter

may cause the process to take unexpected actions.

142 | Failure to Sanitize Value Value delimiters injected into an application can be
Delimiters used to compromise a system. As data is parsed, an

injected/absent/malformed delimiter may cause the
process to take unexpected actions.

143 | Failure to Sanitize Record | Record delimiters injected into an application can
Delimiters be used to compromise a system. As data is parsed,

an injected/absent/malformed delimiter may cause
the process to take unexpected actions.

144 | Failure to Sanitize Line Line delimiters injected into an application can be
Delimiters used to compromise a system. As data is parsed, an

injected/absent/malformed delimiter may cause the
process to take unexpected actions.

145 | Failure to Sanitize Section | Section delimiters injected into an application can
Delimiters be used to compromise a system.

146 | Failure to Sanitize Delimiters between expressions or commands
Expression/Command injected into the software through input can be
Delimiters used to compromise a system.

147 | Improper Sanitization of The software receives input from an upstream
Input Terminators component, but it does not sanitize or incorrectly

sanitizes special elements that could be interpreted
as input terminators when they are sent to a
downstream component.

148 | Failure to Sanitize Input The application does not properly handle when a
Leaders leading character or sequence ("leader") is missing

or malformed, or if multiple leaders are used when
only one should be allowed.

149 | Failure to Sanitize Quoting | Quotes injected into an application can be used to

Syntax

compromise a system. As data are parsed, an
injected/absent/duplicate/malformed use of quotes

97

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

may cause the process to take unexpected actions.

150 | Failure to Sanitize Escape, | Escape, meta, or control character/sequence
Meta, or Control Sequences | injected into an application through input can be

used to compromise a system.

151 | Improper Sanitization of The software receives input from an upstream
Comment Delimiters component, but it does not sanitize or incorrectly

sanitizes special elements that could be interpreted
as comment delimiters when they are sent to a
downstream component.

152 | Improper Sanitization of The software receives input from an upstream
Macro Symbols component, but it does not sanitize or incorrectly

sanitizes special elements that could be interpreted
as macro symbols when they are sent to a
downstream component.

153 | Improper Sanitization of The software receives input from an upstream
Substitution Characters component, but it does not sanitize or incorrectly

sanitizes special elements that could be interpreted
as substitution characters when they are sent to a
downstream component.

154 | Improper Sanitization of The software receives input from an upstream
Variable Name Delimiters | component, but it does not sanitize or incorrectly

sanitizes special elements that could be interpreted
as variable name delimiters when they are sent to a
downstream component.

155 | Improper Sanitization of The software receives input from an upstream
Wildcard or Matching component, but it does not sanitize or incorrectly
Symbols sanitizes special elements that could be interpreted

as wildcards or matching symbols when they are
sent to a downstream component.

156 | Improper Sanitization of The software receives input from an upstream
Whitespace component, but it does not sanitize or incorrectly

sanitizes special elements that could be interpreted
as whitespace when they are sent to a downstream
component.

157 | Failure to Sanitize Paired The software does not properly handle the
Delimiters characters that are used to mark the beginning and

ending of a group of entities, such as parentheses,
brackets, and braces.

158 | Failure to Sanitize Null NUL characters or null bytes injected into an

Byte or NUL Character

application through input can be used to
compromise a system.

98

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

161 | Improper Sanitization of The software receives input from an upstream
Multiple Leading Special component, but it does not sanitize or incorrectly
Elements sanitizes multiple leading special elements that

could be interpreted in unexpected ways when they
are sent to a downstream component.

163 | Improper Sanitization of The software receives input from an upstream
Multiple Trailing Special component, but it does not sanitize or incorrectly
Elements sanitizes multiple trailing special elements that

could be interpreted in unexpected ways when they
are sent to a downstream component.

165 | Improper Sanitization of The software receives input from an upstream
Multiple Internal Special component, but it does not sanitize or incorrectly
Elements sanitizes multiple internal special elements that

could be interpreted in unexpected ways when they
are sent to a downstream component.

554 | ASP.NET The ASP.NET application does not use an input
Misconfiguration: Not validation framework.

Using Input Validation
Framework
564 | SQL Injection: Hibernate Using Hibernate to execute a dynamic SQL
statement built with user-controlled input can
allow an attacker to modify the statement's
meaning or to execute arbitrary SQL commands.

566 | Access Control Bypass Without proper access control, executing a SQL
Through User-Controlled statement that contains a user-controlled primary
SQL Primary Key key can allow an attacker to view unauthorized

records.

601 | URL Redirection to A web application accepts a user-controlled input
Untrusted Site ('Open that specifies a link to an external site, and uses
Redirect') that link in a Redirect. This simplifies phishing

attacks.

611 | Information leak Through | The product processes an XML document that can
XML External Entity File | contain XML entities with URLSs that resolve to
Disclosure documents outside of the intended sphere of

control, causing the product to embed incorrect
documents into its output.

619 | Dangling Database Cursor | If a database cursor is not closed properly, then it

('Cursor Injection')

could become accessible to other users while
retaining the same privileges that were originally
assigned, leaving the cursor "dangling."

99

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

621 | Variable Extraction Error | The product uses external input to determine the
names of variables into which information is
extracted, without verifying that the names of the
specified variables are valid. This could cause the
program to overwrite unintended variables.

624 | Executable Regular The product uses a regular expression that either

Expression Error (1) contains an executable component with user-
controlled inputs, or (2) allows a user to enable
execution by inserting pattern modifiers.

641 | Insufficient Filtering of When an application does not restrict the valid
File and Other Resource names of resources (e.g. files) supplied by the user,
Names for Executable various problems may arise down the line when
Content these resources are used.

643 | Failure to Sanitize Data The software uses external input to dynamically
within XPath Expressions | construct an XPath expression used to retrieve data
('XPath injection') from an XML database, but it does not sufficiently

sanitize that input. This allows an attacker to
control the structure of the query.

644 | Improper Sanitization of The application does not sanitize or incorrectly
HTTP Headers for sanitizes web scripting syntax in HTTP headers
Scripting Syntax that can be used by web browser components that

can process raw headers, such as Flash.

652 | Failure to Sanitize Data The software uses external input to dynamically

within XQuery Expressions
('XQuery Injection')

construct an XQuery expression used to retrieve
data from an XML database, but it does not
sufficiently sanitize that input. This allows an
attacker to control the structure of the query.

The following table lists all non-discernible CWE:s in this cluster:

75 | Failure to Sanitize Special | The software fails to adequately filter user-
Elements into a Different controlled input for special elements with control
Plane (Special Element implications.

Injection)

76 | Failure to Resolve The software fails to adequately filter non-typical
Equivalent Special special elements that are equivalent to control-
Elements into a Different relevant special elements that are already being
Plane filtered.

88 | Argument Injection or The software does not sufficiently delimit the

Modification

arguments being passed to a component in another

100

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

control sphere, allowing alternate arguments to be
provided, leading to potentially security-relevant
changes.

92 | Improper Sanitization of The software uses a custom or proprietary
Custom Special Characters | language or representation, but when it receives
input from an upstream component, it does not
sanitize or incorrectly sanitizes special elements
when they are sent to a downstream component.
97 | Failure to Sanitize Server- | The software fails to adequately filter server-side
Side Includes (SSI) Within | include (control-plane) syntax from user-controlled
a Web Page input (data plane) and then allows potentially
injected server-side includes to be acted upon.
100 | Technology-Specific Input | Weaknesses in this category are caused by
Validation Problems inadequately implemented input validation within
particular technologies.
106 | Struts: Plug-in Framework | When an application does not use an input
not in Use validation framework such as the Struts Validator,
there is a greater risk of introducing weaknesses
related to insufficient input validation.
107 | Struts: Unused Validation | An unused validation form indicates that validation
Form logic is not up-to-date.
159 | Failure to Sanitize Special | Weaknesses in this attack-focused category fail to
Element sufficiently filter and interpret special elements in
user-controlled input which could cause adverse
effect on the software behavior and integrity.
160 | Improper Sanitization of The software receives input from an upstream
Leading Special Elements | component, but it does not sanitize or incorrectly
sanitizes leading special elements that could be
interpreted in unexpected ways when they are sent
to a downstream component.
162 | Improper Sanitization of The software receives input from an upstream
Trailing Special Elements | component, but it does not sanitize or incorrectly
sanitizes trailing special elements that could be
interpreted in unexpected ways when they are sent
to a downstream component.
164 | Improper Sanitization of The software receives input from an upstream

Internal Special Elements

component, but it does not sanitize or incorrectly
sanitizes internal special elements that could be
interpreted in unexpected ways when they are sent
to a downstream component.

101

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

183 | Permissive Whitelist An application uses a "whitelist" of acceptable
values, but the whitelist includes at least one
unsafe value, leading to resultant weaknesses.

184 | Incomplete Blacklist An application uses a "blacklist" of prohibited
values, but the blacklist is incomplete.

185 | Incorrect Regular The software specifies a regular expression in a

Expression way that causes data to be improperly sanitized or
compared.

186 | Overly Restrictive Regular | A regular expression is overly restrictive, which
Expression prevents dangerous values from being detected.

444 | Inconsistent Interpretation | When malformed or abnormal HTTP requests are
of HTTP Requests (‘"HTTP | interpreted by one or more entities in the data flow
Request Smuggling") between the user and the web server, such as a

proxy or firewall, they can be interpreted
inconsistently, allowing the attacker to "smuggle" a
request to one device without the other device
being aware of it.

553 | Command Shell in A possible shell file exists in /cgi-bin/ or other
Externally Accessible accessible directories. This is extremely dangerous
Directory and can be used by an attacker to execute

commands on the web server.

625 | Permissive Regular The product uses a regular expression that does not
Expression sufficiently restrict the set of allowed values.

626 | Null Byte Interaction Error | The product does not properly handle null bytes or
(Poison Null Byte) NUL characters when passing data between

different representations or components.

627 | Dynamic Variable In a language where the user can influence the
Evaluation name of a variable at runtime, if the variable names

are not controlled, an attacker can read or write to
arbitrary variables, or access arbitrary functions.
functions.

646 | Reliance on File Name or | The software allows a file to be uploaded, but it
Extension of Externally- relies on the file name or extension of the file to
Supplied File determine the appropriate behaviors. This could be

used by attackers to cause the file to be
misclassified and processed in a dangerous fashion.

707 | Improper Enforcement of | The software does not enforce or incorrectly

Messages or Data Structure

enforces that structured messages or data are well-
formed before being read from an upstream
component or sent to a downstream component.

102

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.11.2 Secondary Cluster: Tainted Input to Variable

This cluster covers scenarios where the destination of the tainted values is not an API
call, but a programmatic construct, for example, a basic condition, a loop condition, etc.
This Software Fault Pattern covers situations where the tainted input flows into a variable
thus creating a possibility for the attacker to exercise certain control the computation.
This Software Fault Pattern uses a distinct pattern in which the foot-hold is the usage of a
data element.

4.11.2.1 SFP2S5 Tainted Input to Variable

Software Fault Pattern - a weakness where the code path has all of the following:

o The end statement that uses tainted data value.

Where tainted data value is defined as externally controlled value obtained through at
least one of the following scenarios:

e Not validated user input
e Notvalidated configuration settings
e Notvalidated environment variables

Where tainted data value use is defined by exactly one the following scenarios:

o Used as a program*s control variable
o Assigned to a variable.

Where "user input" is defined as data originating through a certain platform-specific
resource which is accessed using a system call

This cluster has 8 CWEs. All CWEs in the cluster are discernible.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

15 | External Control of System | One or more system settings or configuration
or Configuration Setting elements can be externally controlled by a user.

20 | Improper Input Validation | The product does not validate or incorrectly
validates input that can affect the control flow or
data flow of a program.

454 | External Initialization of The software initializes critical internal variables
Trusted Variables using inputs that can come from externally
controlled sources.

103

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

606 | Unchecked Input for Loop | The product does not properly check inputs that are
Condition used for loop conditions, potentially leading to a
denial of service because of excessive looping.

496 | Public Data Assigned to Assigning public data to a private array is
Private Array-Typed Field | equivalent to giving public access to the array.

502 | Deserialization of The application deserializes untrusted data without
Untrusted Data sufficiently verifying that the resulting data will be
valid.

616 | Incomplete Identification The PHP application uses an old method for

of Uploaded File Variables | processing uploaded files by referencing the four
(PHP) global variables that are set for each file (e.g.
$varname, $varname_size, $varname name,
$varname_type). These variables could be
overwritten by attackers, causing the application to
process unauthorized files.

4.11.3 Secondary Cluster: Composite Tainted Input

This cluster is introduced to describe vulnerabilities in which user controlled input
contributes to other weaknesses, for example a buffer overflow in which the buffer length
is tainted data.

There are CWEs that are currently described using this approach.
Characteristics of Composite tainted input

o Is related to the input data validation flowing into an existing weakness condition
or weakness code path that input data contributes to

o allows composite descriptions of vulnerabilities where user controlled input
contributed to other weaknesses and turns them into exploitable security holes

o Currently no CWEs are described as Composite tainted input pattern. This is why
buffer overflow weaknesses do not mention user controlled data as properties of
the buffer access operation. This allows better descriptions of vulnerabilities and
their associated weaknesses.

4.11.3.1 SFP26 Composite Tainted Data

Software Fault Pattern — a weakness where the code path has all of the following:

- a start statement that accepts input data through exactly one of the following:
a) executing "input command" or

b) component entry point (API that can be invoked by platform)

104

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

- an end statement that is an end statement of another SFP that uses a data value where
the input data contributes to the data value

- the condition of the SFP of the end statement is satisfied

NOTE: this software fault pattern describes composition of an existing weakness and
how one of its key data values is affected by user-controlled input data. This SFP defines
the origin of input data. The end statement (destination of data) and the condition are
defined in separate SFPs. Currently several SFP explicitly include "Origin of input data"
parameter, which refers to SFP26.However, the Composite SFP approach can be used to
describe multiple situations where the un-validated user input controls another weakness.

4.11.4 Secondary Cluster: Faulty input Transformation

This cluster covers several scenarios related to the transformation of input, such as
encoding, canonicalization, etc.

This cluster has 15 non-discernible CWEs.

The following table lists all non-discernible CWE:s in this cluster:

116 | Improper Encoding or The software prepares a structured message for
Escaping of Output communication with another component, but
encoding or escaping of the data is either missing
or done incorrectly. As a result, the intended
structure of the message is not preserved.

166 | Improper Handling of The software receives input from an upstream
Missing Special Element component, but it does not handle or incorrectly
handles when an expected special element is
missing.
167 | Improper Handling of The software receives input from an upstream

Additional Special Element | component, but it does not handle or incorrectly
handles when an additional unexpected special
element is missing.

168 | Failure to Resolve The software does not handle when an
Inconsistent Special inconsistency exists between two or more special
Elements characters or reserved words.

172 | Encoding Error The software fails to properly handle encoding or

decoding of the data, resulting in unexpected
values.

173 | Failure to Handle Alternate | The software does not properly handle when an
Encoding input uses an alternate encoding that is valid for the
control sphere to which the input is being sent.

105

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

174 | Double Decoding of the The software decodes the same input twice, which
Same Data can limit the effectiveness of any protection
mechanism that occurs in between the decoding
operations.
175 | Failure to Handle Mixed The software does not properly handle when the
Encoding same input uses several different (mixed)
encodings.
176 | Failure to Handle Unicode | The software does not properly handle when an
Encoding input contains Unicode encoding.
177 | Failure to Handle URL The software does not properly handle when all or
Encoding (Hex Encoding) | part of an input has been URL encoded.
178 | Failure to Resolve Case The software does not properly account for
Sensitivity differences in case sensitivity when accessing or
determining the properties of a resource, leading to
inconsistent results.
179 | Incorrect Behavior Order: | The software validates input before applying
Early Validation protection mechanisms that modify the input,
which could allow an attacker to bypass the
validation via dangerous inputs that only arise after
the modification.
180 | Incorrect Behavior Order: | The software validates input before it is
Validate Before canonicalized, which prevents the software from
Canonicalize detecting data that becomes invalid after the
canonicalization step.
181 | Incorrect Behavior Order: The software validates data before it has been
Validate Before Filter filtered or cleansed, which prevents the software
from detecting data that becomes invalid after the
filtering step.
182 | Collapse of Data Into The software cleanses or filters data in a way that

Unsafe Value

causes the data to be reduced or "collapsed" into an
unsafe value.

4.11.5 Secondary Cluster: Incorrect Input Handling

This cluster covers several scenarios related to processing of complex input structures.
This cluster has 17 non-discernible CWEs.

The following table lists all non-discernible CWE:s in this cluster:

106

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

198 | Use of Incorrect Byte The software receives input from an upstream

Ordering component, but it does not account for byte
ordering (e.g., big-endian and little-endian) when
processing the input, causing an incorrect number
or value to be used.

228 | Improper Handling of The product does not handle or incorrectly handles
Syntactically Invalid input that is not syntactically well-formed with
Structure respect to the associated specification.

229 | Improper Handling of Weaknesses in this category are related to missing
Values or incorrect handling of values that are associated

with parameters, fields, or arguments.

230 | Improper Handling of The software does not handle or incorrectly
Missing Values handles when a parameter, field, or argument name

is specified, but the associated value is missing, i.e.
it is empty, blank, or null.

231 | Improper Handling of The software does not handle or incorrectly
Extra Values handles when more values are specified than

expected.

232 | Improper Handling of The software does not handle or incorrectly
Undefined Values handles when a value is not defined or supported

for the associated parameter, field, or argument
name.

233 | Parameter Problems Weaknesses in this category are related to
improper handling of parameters, fields, or
arguments.

234 | Failure to Handle Missing | If too few arguments are sent to a function, the

Parameter function will still pop the expected number of
arguments from the stack. Potentially, a variable
number of arguments could be exhausted in a
function as well.

235 | Improper Handling of The software does not handle or incorrectly
Extra Parameters handles when a particular parameter, field, or

argument name is specified two or more times.

236 | Improper Handling of The software does not handle or incorrectly
Undefined Parameters handles when a particular parameter, field, or

argument name is not defined or supported by the
product.

237 | Improper Handling of The software does not handle or incorrectly

Structural Elements

handles inputs that are related to complex
structures..

107

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

238 | Improper Handling of The application does not handle or incorrectly
Incomplete Structural handles when a particular structural element is not
Elements completely specified.

239 | Failure to Handle The application does not properly handle when a
Incomplete Element particular element is not completely specified.

240 | Improper Handling of The software does not handle or incorrectly
Inconsistent Structural handles when two or more structural elements
Elements should be consistent, but are not.

241 | Improper Handling of The application does not handle or incorrectly
Unexpected Data Type handles when a particular element is not the

expected type, e.g. it expects a digit (0-9) but is
provided with a letter (A-Z).

351 | Insufficient Type The software does not properly distinguish
Distinction between different types of elements in a way that

leads to insecure behavior.

354 | Improper Validation of The software does not validate or incorrectly
Integrity Check Value validates the integrity check values or "checksums"

of' a message. This may prevent it from detecting if
the data has been modified or corrupted in
transmission.

4.11.6 Secondary Cluster: Tainted Input to Environment

This cluster covers scenarios where the tainted values affect various element of the
computation environment which has an indirect effect on the computation itself.

This cluster has 11 CWEs. 3 CWEs in the cluster are discernible. There are also 8 non-
discernible CWEs.

4.11.6.1

SFP27 Tainted Input to Environment

Software Fault Pattern - a weakness where the code path has all of the following:

o The end statement that calls a tainted control element.

Where tainted control element is defined by exactly one the following scenarios:

o Loading library from untrusted sourceDynamically loading code from

untrusted source

o External function hook

108

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

494

Download of Code Without

The product downloads source code or an

Arguments

Integrity Check executable from a remote location and executes the
code without sufficiently verifying the origin and
integrity of the code.

545 | Use of Dynamic Class Dynamically loaded code has the potential to be

Loading malicious.

622 | Unvalidated Function Hook | A product adds hooks to user-accessible API

functions, but does not properly validate the
arguments. This could lead to resultant
vulnerabilities.

The following table lists all non-discernible CWEs:

94 | Failure to Control The product does not sufficiently filter code
Generation of Code ('Code | (control-plane) syntax from user-controlled input
Injection') (data plane) when that input is used within code

that the product generates.

114 | Process Control Executing commands or loading libraries from an
untrusted source or in an untrusted environment
can cause an application to execute malicious
commands (and payloads) on behalf of an attacker.

427 | Uncontrolled Search Path | One or more locations in a static search path are
Element under control of the attacker.

470 | Use of Externally- The application uses external input with reflection
Controlled Input to Select | to select which classes or code to use, but it does
Classes or Code ('Unsafe not sufficiently prevent the input from selecting
Reflection") improper classes or code.

471 | Modification of Assumed- | The software does not properly protect an
Immutable Data (MAID) assumed-immutable element from being modified

by an attacker.

472 | External Control of The web application does not sufficiently verify
Assumed-Immutable Web | inputs that are assumed to be immutable but are
Parameter actually externally controllable, such as hidden

form fields.

473 | PHP External Variable A PHP application does not properly protect
Modification against the modification of variables from external

sources, such as query parameters or cookies. This

109

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

can expose the application to numerous
weaknesses that would not exist otherwise.

673 | External Influence of The product does not prevent the definition of
Sphere Definition control spheres from external actors.

4.12 Primary Cluster: Entry Points

This cluster of weaknesses relates to unexpected entry points into the application. Extra
entry points may be defined by leftover debug code or testing code. The extra entry
points are associated with extra debug computations or test computations, which may
contain various related weaknesses, not contained in the production computation. The
common characteristics of this cluster include:

o Component entry point
o Production computation
o Test computation

o Debug computation

Through these characteristics this cluster is associated to the following clusters:

o Authentication

o Information leak
o Malware

o Channel

o Ul

This cluster contains 11 CWEs. All CWEs are described using discernible properties and
contribute to a software fault pattern.

This cluster has only one secondary cluster (no further differentiation).

4.12.1 Secondary Cluster: Unexpected Access Points
This cluster has 11 CWESs. All CWE:s in the cluster are discernible.

4.12.1.1 SFP28 Unexpected Access Points

Software Fault Pattern - a weakness where the code path has all of the following:

110

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Statement that defines an entry point into an application where the entry point is
not required by production code.

Where “entry point that is not required by production code” is defined as any
functionality not required by the production code such as at least one of the following:

o Debug code, or

o Test code, or

o Access to data

NOTE: We focus at the entry point itself rather than at the information or sensitive
information that is exposed by the code associated with the entry point.

The following table lists all discernible CWEs that contribute to this software fault

pattern:

489 | Leftover Debug Code The application can be deployed with active
debugging code that can create unintended entry
points.

531 | Information leak Through | Accessible test applications can pose a variety of

Test Code

security risks. Since developers or administrators
rarely consider that someone besides themselves
would even know about the existence of these
applications, it is common for them to contain
sensitive information or functions.

super.clone()

608 | Struts: Non-private Field in | An ActionForm class contains a field that has not
ActionForm Class been declared private, which can be accessed

without using a setter or getter.

491 | Public cloneable() Method | A class has a cloneable() method that is not
Without Final ('Object declared final, which allows an object to be created
Hijack') without calling the constructor. This can cause the

object to be in an unexpected state.

493 | Critical Public Variable The product has a critical public variable that is not
Without Final Modifier final, which allows the variable to be modified to

contain unexpected values.

500 | Public Static Field Not An object contains a public static field that is not
Marked Final marked final, which might allow it to be modified

in unexpected ways.

568 | finalize() Method Without | The software contains a finalize() method that does
super.finalize() not call super.finalize().

580 | clone() Method Without The software contains a clone() method that fails to

call super.clone() to obtain the new object.

111

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

582 | Array Declared Public, The program declares an array public, final, and
Final, and Static static, which is not sufficient to prevent the array's
contents from being modified.
583 | finalize() Method Declared | The program violates secure coding principles for
Public mobile code by declaring a finalize() method
public.
766 | Critical Variable Declared | The software declares a critical variable or field to
Public be public when intended security policy requires it
to be private.
4.13 Primary Cluster: Authentication

This cluster of weaknesses relates to establishing the identity of an actor associated with
the computation, or the identity of the endpoint involved in the computation through a
certain channel. Authentication cluster is closely related to Access Control which focuses
at resource access by an authenticated actor with appropriate access rights as well as
ownership of the resources by the authenticated actors.

The common characteristics of the “Authentication” cluster include the following:

o

o

o

(@]

(@]

Authentication mechanism, including password
Authenticated actor, its identity and management
Authentication check

Management of actors

Sensitive data

Through these characteristics the “Authentication” cluster is associated with the
following clusters:

(@]

(@]

Access control

Entry point

Ul

Information leak

Resource access

Tainted input (through input processing)

Exception management

112

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This cluster contains 43 CWEs. Only 14 CWEs contribute to software fault patterns. 29
CWEs are described using non-discernible properties. The major challenge of the
“Authentication” cluster is the lack of good foot-holds for the white-box description. In
particular the “Authentication” concept is itself the purpose of a certain code region
rather than a white-box pattern. Authentication often involves complex logic.

The “Authentication” cluster includes the following 9 secondary clusters:

©)

Authentication bypass — this cluster covers situations related to incomplete
authentication steps; there is no sufficient white-box content in this cluster

Faulty endpoint authentication — this cluster covers scenarios involved in endpoint
authentication; the foot-hold in this scenario is a certain condition which uses an
inappropriate authentication mechanism

Missing endpoint authentication — this cluster covers scenarios where the endpoint
authentication is absent. The foot-hold of this scenario is the resource access or a
critical operation.

Digital certificate — this cluster covers specific authentication issues related to
digital certificate management.

Missing authentication — this cluster covers scenarios where the authentication is
absent and the resource access or critical operation occur at a code region where
the corresponding actor is not authenticated

Insecure authentication policy — this cluster covers miscellaneous policy issues
related to authentication. There is no sufficient white-box content in the CWEs in
this cluster

Multiple binds to the same port — this cluster covers a specific pattern describing
multiple binds to the same port.

Hardcoded sensitive data — this cluster covers various situations where the
sensitive date involved in authentication checks in hardcoded.

Unrestricted authentication — this cluster covers specific situation where there is a
loopback in the unauthenticated region, leading back to the authentication,
without sufficient control

4.13.1 Secondary Cluster: Authentication Bypass

This cluster covers situations related to incomplete authentication steps; there is no
sufficient white-box content in this cluster.

113

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

This cluster has 10 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWEs in this cluster:

287 | Improper Authentication When an actor claims to have a given identity, the
software does not prove or insufficiently proves
that the claim is correct.

288 | Authentication Bypass A product requires authentication, but the product
Using an Alternate Path or | has an alternate path or channel that does not
Channel require authentication.

289 | Authentication Bypass by | The software performs authentication based on the
Alternate Name name of a resource being accessed, or the name of

the actor performing the access, but it does not
properly check all possible names for that resource
or actor.

303 | Incorrect Implementation The requirements for the software dictate the use
of Authentication of an established authentication algorithm, but the
Algorithm implementation of the algorithm is incorrect.

304 | Missing Critical Step in The software implements an authentication
Authentication technique, but it skips a step that weakens the

technique.

305 | Authentication Bypass by | The authentication algorithm is sound, but the
Primary Weakness implemented mechanism can be bypassed as the

result of a separate weakness that is primary to the
authentication error.

308 | Use of Single-factor The use of single-factor authentication can lead to
Authentication unnecessary risk of compromise when compared

with the benefits of a dual-factor authentication
scheme.

309 | Use of Password System The use of password systems as the primary means
for Primary Authentication | of authentication may be subject to several flaws or

shortcomings, each reducing the effectiveness of
the mechanism.

592 | Authentication Bypass The software does not properly perform
Issues authentication, allowing it to be bypassed through

various methods.

603 | Use of Client-Side A client/server product performs authentication

Authentication

within client code but not in server code, allowing
server-side authentication to be bypassed via a
modified client that omits the authentication check.

114

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.13.2 Secondary Cluster: Faulty Endpoint Authentication

This cluster covers scenarios involved in endpoint authentication; the foot-hold in this
scenario is a certain condition which uses an inappropriate authentication mechanism.

This cluster has 11 CWEs. 6 CWEs in the cluster are discernible.

4.13.2.1 SFP29 Faulty Endpoint Authentication

Software Fault Pattern - a weakness where the code path has all of the following:

o a start statement that performs input with the input data

o an end statement that performs condition check that involves data value where the
data value is a property of the input data and the property provides insufficient
endpoint authentication

Where “property of the input data” is defined as the result of the API calls marked
in the knowledge base as returning properties of the input data where the input
data is passed as the key parameter to the call. There can be chains of such
properties, for example getRemoteAddr()->getByName()-
>getCanonicalHostName(), where the first call operates on a request and the last
call return a property of that request.

Where “property provides insufficient endpoint authentication” is defined a
property that is marked in the knowledge base as insufficient for authentication.

NOTE: the end statement occur at the “request region” of the input, where the “request
region” is defined as the code fragment that is reachable from the input by control flow.
This is already incorporated in the definition of a code path, in which the start statement
performs input — the end statement by definition occurs at the “request region” on the
input.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

247 | Reliance on DNS Lookups | Attackers can spoof DNS entries. Do not rely on

in a Security Decision DNS names for security.
292 | Trusting Self-reported The use of self-reported DNS names as
DNS Name authentication is flawed and can easily be spoofed
by malicious users.
293 | Using Referer Field for The referer field in HTTP requests can be easily
Authentication modified and, as such, is not a valid means of

message integrity checking.

115

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

350 | Improperly Trusted The software trusts the hostname that is provided
Reverse DNS when performing a reverse DNS resolution on an
IP address, without also performing forward
resolution.
360 | Trust of System Event Data | Security based on event locations is insecure and
can be spoofed.
565 | Use of Cookies in Security | The software relies on the existence or values of

Decision

cookies when making a security decision.

The following table lists all non-discernible CWE:s in this cluster:

302 | Authentication Bypass by | The authentication scheme or implementation uses

Assumed-Immutable Data | key data elements that are assumed to be
immutable, but can be controlled or modified by
the attacker.

345 | Insufficient Verification of | The software does not sufficiently verify the origin
Data Authenticity or authenticity of data, in a way that causes it to

accept invalid data.

346 | Origin Validation Error The software does not properly verify that the

source of data or communication is valid.

551 | Incorrect Behavior Order: | If a web server does not fully parse requested
Authorization Before URLs before it examines them for authorization, it
Parsing and may be possible for an attacker to bypass
Canonicalization authorization protection.

647 | Use of Non-Canonical The software defines policy namespaces and

URL Paths for
Authorization Decisions

makes authorization decisions based on the
assumption that a URL is canonical. This can allow
a non-canonical URL to bypass the authorization.

4.13.3 Secondary Cluster: Missing Endpoint Authentication

This cluster covers scenarios where the endpoint authentication is absent. The foot-hold
of this scenario is the resource access or a critical operation.

This cluster has 2 CWEs. All CWEs in the cluster are discernible.

4.13.3.1

SFP30 Missing Endpoint Authentication

Software Fault Pattern - a weakness where the code path has all of the following:

o a start statement that performs input with input data

116

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o an end statement that accesses the input data where the end statement occurs at
the region that is not guarded by endpoint authentication conditions of the input

data

Where “endpoint authentication condition of an input data” is a condition that
involves data value that is a property of the input data.

Where “statement accesses input data” is defined as an API call which is defined
in the knowledge base as accessing the input data and where the input data is a
passed as the key parameter to the call.

Where a “region guarded by condition” is a code fragment that starts at the
selected branch of the condition (the branch where the condition is considered

validated).

The following table lists all discernible CWEs that contribute to this software fault

pattern:

422 | Unprotected Windows The software does not properly verify the source of
Messaging Channel a message in the Windows Messaging System
(‘Shatter") while running at elevated privileges, creating an

alternate channel through which an attacker can
directly send a message to the product.

425 | Direct Request ('Forced The web application fails to adequately enforce
Browsing') appropriate authorization on all restricted URLSs,

scripts or files.

4.13.4 Secondary Cluster: Digital Certificate

This cluster covers specific authentication issues related to digital certificate
management.

This cluster has 6 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

Host-specific Certificate
Data

296 | Improper Following of The chain of trust is not followed or is incorrectly
Chain of Trust in followed when validating a certificate, resulting in
Certificate Validation incorrect trust of any resource that is associated

with that certificate.

297 | Improper Validation of Host-specific certificate data is not validated or is

incorrectly validated, so while the certificate read
is valid, it may not be for the site originally

117

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

requested.

298 | Improper Validation of A certificate expiration is not validated or is
Certificate Expiration incorrectly validated, so trust may be assigned to
certificates that have been abandoned due to age.
299 | Improper Check for The software does not check or incorrectly checks
Certificate Revocation the revocation status of a certificate, which may
cause it to use a certificate that has been
compromised.
593 | Authentication Bypass: The software modifies the SSL context after
OpenSSL CTX Object connection creation has begun.

Modified after SSL Objects
are Created

599 | Trust of OpenSSL The failure to validate certificate data may mean
Certificate Without that an attacker may be claiming to be a host which
Validation it is not.

4.13.5 Secondary Cluster: Missing Authentication

This cluster covers scenarios where the authentication is absent and the resource access
or critical operation occurs at a code region where the corresponding actor is not
authenticated.

This cluster has 2 CWEs. All CWEs in the cluster are discernible.

4.13.5.1 SFP31 Missing Authentication

Software Fault Pattern - a weakness where the code path has all of the following

o an end statement that performs a critical operation where the end statement occurs
at the region that is not guarded by authentication conditions

Where “authentication condition” is a condition that involves a data value that is
a result of an API call that is marked in the knowledge base as authentication call.

Where “statement performs critical operation” is defined as an API call which is
defined in the knowledge base as performing a critical operation (for example, a
password change).

The following table lists all discernible CWE:s in this cluster:

306 | No Authentication for The software does not perform any authentication
Critical Function for functionality that requires a provable user
identity or consumes a significant amount of
resources.
118

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

620

Unverified Password
Change

When setting a new password for a user, the
product does not require knowledge of the original
password, or using another form of authentication.

4.13.6 Secondary Cluster: Insecure Authentication Policy

This cluster covers miscellaneous policy issues related to authentication. There is no
sufficient white-box content in the CWEs in this cluster.

This cluster has 6 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

Lockout Mechanism

262 | Not Using Password Aging | If no mechanism is in place for managing
password aging, users will have no incentive to
update passwords in a timely manner.

263 | Password Aging with Long | Allowing password aging to occur unchecked can

Expiration result in the possibility of diminished password
integrity.

521 | Weak Password The product does not require that users should
Requirements have strong passwords, which makes it easier for

attackers to compromise user accounts.

556 | ASP.NET Configuring an ASP.NET application to run with
Misconfiguration: Use of impersonated credentials may give the application
Identity Impersonation unnecessary privileges.

613 | Insufficient Session According to WASC, "Insufficient Session
Expiration Expiration is when a web site permits an attacker

to reuse old session credentials or session IDs for
authorization."

645 | Overly Restrictive Account | The software contains an account lockout

protection mechanism, but the mechanism is too
restrictive and can be triggered too easily. This
allows attackers to deny service to legitimate users
by causing their accounts to be locked out.

4.13.7 Secondary Cluster: Multiple binds to the Same Port

This cluster covers a specific pattern describing multiple binds to the same port.
This cluster has 1 CWE. All CWE:s in the cluster are discernible.

119

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.13.7.1 SFP32 Multiple Binds to the Same Port

Software Fault Pattern - a weakness where the code path has all of the following:

o an end statement that performs binding of a socket where the socket allows
multiple bindings

Where “socket allows multiple bindings” is defined as a specific value “bind to all
interfaces” INADD_ ANY or 0.0.0.0.

The following table lists all discernible CWE:s in this cluster:

605 | Multiple Binds to the Same | When multiple sockets are allowed to bind to the
Port same port, other services on that port may be stolen
or spoofed.

4.13.8 Secondary Cluster: Hardcoded Sensitive Data

This cluster covers various situations where the sensitive data involved in authentication
checks in hardcoded. Sensitive data is defined as data which flow from sensitive
operations or flows into sensitive operations as the key parameter. “Sensitive” is the role
that a data element plays in a certain context. We can know this role based on the APIs
that are involved n producing/consuming/transforming the data element. If a data element
was passed to a password management function, it can be assumed to be a password. If a
data element is passed to a function that is known to require a private key — it is a private
key. The fact that a certain string is a “password” or a “private key” is a role that the
string plays in some context. This role can be in some cases detected by examining the
APIs involved.

The runtime knowledge base should distinguish between the roles of a “public key” and
the “private key”. It*s a hard-coded crypto key used for encryption that is the problem. A
hard-coded “public key”, used for authentication/identification has less impact. Ideally,
it wouldnt be COMPLETELY hard-coded, so that you could remove a bad key, but these
aren‘t the weakness that a hard-coded ENCRYPTION key is.

This cluster has 4 CWEs. 2 CWEs in the cluster are discernible. 2 CWEs are non-
discernible.

4.13.8.1 SFP33 Hardcoded Sensitive Data

Software Fault Pattern — a weakness where the code path has all of the following:

o a start statement that accepts sensitive data item

o an end statement that performs comparison where one operand is the sensitive
data item and the other operand is a constant value

120

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

259 | Hard-Coded Password The software contains a hard-coded password,
which it uses for its own inbound authentication or
for outbound communication to external

components.
321 | Use of Hard-coded The use of a hard-coded cryptographic key
Cryptographic Key significantly increases the possibility that

encrypted data may be recovered.

The following table lists all non-discernible CWEs in this cluster:

258 | Empty Password in Using an empty string as a password is insecure.
Configuration File

547 | Use of Hard-coded, The program uses hard-coded constants instead of
Security-relevant Constants | symbolic names for security-critical values, which
increases the likelihood of mistakes during code
maintenance or security policy change.

4.13.9 Secondary Cluster: Unrestricted Authentication

This cluster covers specific situation where there is a loopback in the unauthenticated
region, leading back to the authentication, without sufficient restriction.

This cluster has 1 discernible CWE.

4.13.9.1 SFP34 Unrestricted Authentication

Software Fault Pattern - a weakness where the code path has all of the following:
o an end statement that performs authentication where the unvalidated branch has a
loopback path and the authentication control is absent
Where “authentication control” is defined as the condition associated with the
code path that limits the number of the authentication attempts.

Where a “statement that performs authentication” is an authentication condition

The following table lists all discernible CWEs that contribute to this software fault
pattern:

121

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

307 | Failure to Restrict The software does not implement sufficient
Excessive Authentication measures to prevent multiple failed authentication
Attempts attempts within in a short time frame, making it
more susceptible to brute force attacks.

4.14 Primary Cluster: Access Control

This cluster of weaknesses relates to validating resource owners and their permissions.
The common characteristics of this cluster include:

o Authenticated actor, its identity and management
o Access rights and their management

o Resource, protected resource

o Resource ownership

o Access control check, protected region

o Resource access operation

o Operation that sets access rights on a resource

o Privilege

o Sensitive data

Through these characteristics the “Access control” cluster is associated to the following
clusters:

o Authentication

o Privilege

o Resource management

o Exception management

o Information leak (in particular though insecure permanent data store)

There are 16 CWEs in this cluster. Most CWEs in this cluster are described using non-
discernible properties.

The Access Control cluster includes the following 3 secondary clusters:

122

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Insecure resource access — this cluster covers situations related to the bypass of
access control checks

o Access management — this cluster covers various situations related to the
management of resource owners and access rights. There is no sufficient white-
box content in CWE descriptions for this cluster

o Insecure resource permissions — this cluster covers various scenarios related to
setting permissions of the resources. The foot-hold of this scenario is the
operation that sets resource permissions (such as resource creation, cloning, or
explicit permission setting)

4.14.1 Secondary Cluster: Insecure Resource Access

This cluster covers situations related to the bypass of access control checks.

This cluster has 4 CWEs. 2 CWEs in the cluster are discernible. 2 CWEs are non-
discernible.

4.14.1.1 SFP35 Insecure Resource Access

Software Fault Pattern - a weakness where the code path has all of the following:

o An End statement that performs a resource access to a resource where the end
statement occurs at the region that is not guarded by access control conditions
involving the resource.

Where “access control condition involving a resource” is a condition that
involves data value that is a result of an API call that is marked in the knowledge
base as authentication call where the API call is passed another data value that is a
property of the resource

Where “statement performs resource access” is defined as an API call which is
defined in the knowledge base as performing a resource access

Where “property of resource” is defined as the result of the API calls marked in
the knowledge base as returning properties of the resource where the resource
identity is passed as the key parameter to the call. There can be chains of such
properties.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

123

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

285 | Improper Access Control The software does not perform or incorrectly
(Authorization) performs access control checks across all potential
execution paths.
424 | Failure to Protect Alternate | The product does not sufficiently protect all

Path

possible paths that a user can take to access
restricted functionality or resources.

The following table lists all non-discernible CWE:s in this cluster:

639 | Access Control Bypass The system's access control functionality does not
Through User-Controlled | prevent one user from gaining access to another
Key user's records by modifying the key value
identifying the record.
650 | Trusting HTTP Permission | The server contains a protection mechanism that

Methods on the Server Side

assumes that any URI that is accessed using HTTP
GET will not cause a state change to the associated
resource. This might allow attackers to bypass
intended access restrictions and conduct resource
modification and deletion attacks, since some
applications allow GET to modify state.

4.14.2 Secondary Cluster: Insecure Resource Permissions

This cluster covers various scenarios related to setting permissions of the resources. The
foot-hold of this scenario is the operation that sets resource permissions (such as resource
creation, cloning, or explicit permission setting).

This cluster has 7 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

Inherited Permissions

276 | Incorrect Default The software, upon installation, sets incorrect
Permissions permissions for an object that exposes it to an
unintended actor.
277 | Insecure Inherited A product defines a set of insecure permissions
Permissions that are inherited by objects that are created by the
program.
278 | Insecure Preserved A product inherits a set of insecure permissions for

an object, e.g. when copying from an archive file,
without user awareness or involvement.

124

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

279 | Incorrect Execution- While it is executing, the software sets the
assigned Permissions permissions of an object in a way that violates the
intended permissions that have been specified by
the user.
281 | Improper Preservation of The software does not preserve permissions or
Permissions incorrectly preserves permissions when copying,
restoring, or sharing objects, which can cause them
to have less restrictive permissions than intended.
560 | Use of umask() with The product calls umask() with an incorrect
chmod-style Argument argument that is specified as if it is an argument to
chmod().
732 | Incorrect Permission The software specifies permissions for a security-

Assignment for Critical
Resource

critical resource in a way that allows that resource
to be read or modified by unintended actors.

4.14.3 Secondary Cluster: Access Management

This cluster covers various situations related to the management of resource owners and
access rights. There is no sufficient white-box content in CWE descriptions for this

cluster

This cluster has 5 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

282 | Improper Ownership The software assigns the wrong ownership, or does
Management not properly verify the ownership, of an object or
resource.
283 | Unverified Ownership The software does not properly verify that a critical
resource is owned by the proper entity.
284 | Access Control Improper administration of the permissions to the
(Authorization) Issues users of a system can result in unintended access to
sensitive files.
286 | Incorrect User The software does not properly manage a user
Management within its environment.
708 | Incorrect Ownership The software assigns an owner to a resource, but

Assignment

the owner is outside of the intended control sphere.

125

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.15 Primary Cluster: Privilege

This cluster of weaknesses relates to code regions with inappropriate privilege level. The
common characteristics of this cluster include:

o Privilege level

o Privileged operation

o Region with elevated privilege
o Privilege check

o Resource access operation

Through these characteristics the “Privilege” cluster is associated with the following
clusters:

o Access control
o Exception management
o Resource access

There are 12 CWEs in this cluster. Most CWE descriptions do not have sufficient white-
box content.

This cluster has only one secondary cluster (no further differentiation).

4.15.1 Secondary Cluster: Privilege

This cluster has 12 CWEs. Only 1 CWE:s in the cluster is discernible. 11 CWESs are non-
discernible.

4.15.1.1 SFP36 Privilege
Software Fault Pattern - a weakness where the code path has all of the following:

o start statement that performs a privileged operation

o end statement that accesses resource where the access is performed at elevated
privilege

Where “access at elevated privilege” is defined by a scenario when the code path
does not contain a statement that drops privilege

126

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

The following table lists all discernible CWEs that contribute to this software fault
pattern:

272

Least Privilege Violation

The elevated privilege level required to perform
operations such as chroot() should be dropped
immediately after the operation is performed.

The following table lists all non-discernible CWE:s in this cluster:

9 J2EE Misconfiguration: If elevated access rights are assigned to EJB
Weak Access Permissions | methods, then an attacker can take advantage of
for EJB Methods the permissions to exploit the software system.

250 | Execution with The software performs an operation at a privilege
Unnecessary Privileges level that is higher than the minimum level

required, which creates new weaknesses or
amplifies the consequences of other weaknesses.

266 | Incorrect Privilege A product incorrectly assigns a privilege to a
Assignment particular actor, creating an unintended sphere of

control for that actor.

267 | Privilege Defined With A particular privilege, role, capability, or right can
Unsafe Actions be used to perform unsafe actions that were not

intended, even when it is assigned to the correct
entity.

268 | Privilege Chaining Two distinct privileges, roles, capabilities, or rights
can be combined in a way that allows an entity to
perform unsafe actions that would not be allowed
without that combination.

269 | Improper Privilege The software does not properly assign, modify, or

Management track privileges for an actor, creating an
unintended sphere of control for that actor.

270 | Privilege Context The software does not properly manage privileges
Switching Error while it is switching between different contexts

that have different privileges or spheres of control.

271 | Privilege Dropping / The software does not drop privileges before
Lowering Errors passing control of a resource to an actor that does

not have those privileges.

274 | Improper Handling of The software does not handle or incorrectly
Insufficient Privileges handles when it has insufficient privileges to

perform an operation, leading to resultant
weaknesses.

127

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

520 | NET Misconfiguration: Allowing a .NET application to run at potentially
Use of Impersonation escalated levels of access to the underlying
operating and file systems can be dangerous and
result in various forms of attacks.

653 | Insufficient The product does not sufficiently
Compartmentalization compartmentalize functionality or processes that
require different privilege levels, rights, or
permissions.

4.16 Primary Cluster: Channel

These cluster groups weaknesses related to various “protocol” issues. The common
characteristics of this cluster include:

o Channel
o Computation
o Component entry point
Through these characteristics the “Channel” cluster is associated to the following

clusters:

o Entry point

o Authentication

o Information leak

o Tainted input

o Exception management

There are 13 CWEs in this cluster. All CWEs in this cluster are non-discernible, as
protocol characteristics are derived properties of the computation. Each actor
participating in a protocol performs according to a certain role defined by the protocol.
Deviation from the correct computation flow defined by the protocol are usually non
discernible without some other representation of the correct protocol, and even then the
full property check is often an intractable problem. Additional research needs to be
performed to discover white-box patterns associated with protocol issues.

The Channel cluster includes the following 2 secondary clusters:

o Channel attack — this cluster covers various attack patterns related to channels.

128

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Protocol error — this cluster covers various deviations between the required
protocol and its implementation by the actors

4.16.1 Secondary Cluster: Channel Attack

This cluster covers various attack patterns related to channels.
This cluster has 8 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

290 | Authentication Bypass by | This attack-focused weakness is caused by
Spoofing improperly implemented authentication schemes

that are subject to spoofing attacks.

294 | Authentication Bypass by | A capture-replay flaw exists when the design of the
Capture-replay software makes it possible for a malicious user to

sniff network traffic and bypass authentication by
replaying it to the server in question to the same
effect as the original message (or with minor
changes).

300 | Channel Accessible by The product does not adequately verify the identity
Non-Endpoint ('Man-in- of actors at both ends of a communication channel,
the-Middle") or does not adequately ensure the integrity of the

channel, in a way that allows the channel to be
accessed or influenced by an actor that is not an
endpoint.

301 | Reflection Attack in an Simple authentication protocols are subject to
Authentication Protocol reflection attacks if a malicious user can use the

target machine to impersonate a trusted user.

419 | Unprotected Primary The software uses a primary channel for
Channel administration or restricted functionality, but it

does not properly protect the channel.

420 | Unprotected Alternate The software protects a primary channel, but it
Channel does not use the same level of protection for an

alternate channel.

421 | Race Condition During The product opens an alternate channel to
Access to Alternate communicate with an authorized user, but the
Channel channel is accessible to other actors.

441 | Unintended A product can be used as an intermediary or proxy
Proxy/Intermediary between an attacker and the ultimate target, so that

the attacker can either bypass access controls or
hide activities.

129

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.16.2 Secondary Cluster: Protocol Error

This cluster covers various deviations between the required protocol and its
implementation by the actors.

This cluster has 5 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWEs in this cluster:

353

Failure to Add Integrity
Check Value

If integrity check values or "checksums" are
omitted from a protocol, there is no way of
determining if data has been corrupted in
transmission.

435

Interaction Error

An interaction error occurs when two entities work
correctly when running independently, but they
interact in unexpected ways when they are run
together.

436

Interpretation Conflict

Product A handles inputs or steps differently than
Product B, which causes A to perform incorrect
actions based on its perception of B's state.

437

Incomplete Model of
Endpoint Features

A product acts as an intermediary or monitor
between two or more endpoints, but it does not
have a complete model of an endpoint's features,
behaviors, or state, potentially causing the product
to perform incorrect actions based on this
incomplete model.

757

Selection of Less-Secure
Algorithm During
Negotiation ('Algorithm
Downgrade')

A protocol or its implementation supports
interaction between multiple actors and allows
those actors to negotiate which algorithm should
be used as a protection mechanism such as
encryption or authentication, but it does not select
the strongest algorithm that is available to both
parties.

4.17 Primary Cluster: Cryptography

This cluster of weaknesses relates to use of ciphers, keys and other cryptography issues.
The common characteristics of this cluster include:

o Sensitive data

130

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Predictability

Through these characteristics this cluster is associated to the following clusters:

o Authentication
o Information leak
o Predictability

There are 13 CWEs in this cluster. All CWEs are described using non-discernible
properties.

The Cryptography cluster includes the following 2 secondary clusters:
o Broken cryptography

o Weak cryptography

4.17.1 Secondary Cluster: Broken Cryptography

This cluster has 5 CWEs. All CWEs in the cluster are non-discernible.
The following table lists all non-discernible CWEs in this cluster:

325 | Missing Required The software does not implement a required step in
Cryptographic Step a cryptographic algorithm, resulting in weaker
encryption than advertised by that algorithm.

327 | Use of a Broken or Risky The use of a broken or risky cryptographic
Cryptographic Algorithm algorithm is an unnecessary risk that may result in
the disclosure of sensitive information.

328 | Reversible One-Way Hash | The product uses a hashing algorithm that
produces a hash value that can be used to
determine the original input, or to find an input that
can produce the same hash, more efficiently than
brute force techniques.

759 | Use of a One-Way Hash The software uses a one-way cryptographic hash
without a Salt against an input that should not be reversible, such
as a password, but the software does not also use a
salt as part of the input.

760 | Use of a One-Way Hash The software uses a one-way cryptographic hash
with a Predictable Salt against an input that should not be reversible, such
as a password, but the software uses a predictable
salt as part of the input.

131

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.17.2 Secondary Cluster: Weak Cryptography
This cluster has 8 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

261 | Weak Cryptography for Obscuring a password with a trivial encoding does
Passwords not protect the password.
322 | Key Exchange without The software performs a key exchange with an
Entity Authentication actor without verifying the identity of that actor.
323 | Reusing a Nonce, Key Pair | Nonces should be used for the present occasion
in Encryption and only once.
324 | Use of a Key Past its The product uses a cryptographic key or password
Expiration Date past its expiration date, which diminishes its safety
significantly by increasing the timing window for
cracking attacks against that key.
326 | Weak Encryption Insufficiently strong encryption schemes may not
adequately secure secret data from attackers.
Attackers can guess or use brute force attacks to
break weakly encrypted schemes.
329 | Not Using a Random IV Not using a random initialization Vector (IV) with
with CBC Mode Cipher Block Chaining (CBC) Mode causes
algorithms to be susceptible to dictionary attacks.
347 | Improperly Verification of | The software does not verify, or incorrectly
Cryptographic Signature verifies, the cryptographic signature for data.
640 | Weak Password Recovery | The software contains a mechanism for users to

Mechanism for Forgotten
Password

recover or change their passwords without
knowing the original password, but the mechanism
is weak.

4.18 Primary Cluster: Malware

This cluster of weaknesses relates to any malicious code that is present in the software
system. Malicious computations are performed as part of the production computation,
and may use covert channels as well as regular channels. The common characteristics of
this cluster include the following:

o Channel

o Production computation

132

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

(©)

©)

Malicious computation

Covert channel

There are 11 CWEs in this cluster. All CWE are describe using non-discernible
properties, as “maliciousness” property is a highly derived property related to the
meaning of the computation, rather than to the particular white-box patterns.

The Malware cluster includes the following 2 secondary clusters:

o

Malicious code— this cluster covers various scenarios of implanted code with
malicious intent

Covert channel — this cluster covers scenarios which involve covert means of
communication that are often used by malicious code

4.18.1 Secondary Cluster: Malicious Code

This cluster covers various scenarios of implanted code with malicious intent.

This cluster has 8 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

69 | Failure to Handle The software does not properly prevent access to, or
Windows ::DATA detect usage of, alternate data streams (ADS).
Alternate Data Stream

506 | Embedded Malicious Code | The application contains code that appears to be
malicious in nature.

507 | Trojan Horse The software appears to contain benign or useful
functionality, but it also contains code that is hidden
from normal operation that violates the intended
security policy of the user or the system
administrator.

508 | Non-Replicating Malicious | Non-replicating malicious code only resides on the

Code target system or software that is attacked; it does not
attempt to spread to other systems.

509 | Replicating Malicious Replicating malicious code, including viruses and
Code (Virus or Worm) worms, will attempt to attack other systems once it

has successfully compromised the target system or
software.

510 | Trapdoor A trapdoor is a hidden piece of code that responds

133

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

to a special input, allowing its user access to
resources without passing through the normal
security enforcement mechanism.

511 | Logic/Time Bomb The software contains code that is designed to
disrupt the legitimate operation of the software (or
its environment) when a certain time passes, or
when a certain logical condition is met.

512 | Spyware The software collects personally identifiable
information about a human user or the user's
activities, but the software accesses this information
using other resources besides itself, and it does not
require that user's explicit approval or direct input
into the software.

4.18.2 Secondary Cluster: Covert Channel

This cluster covers scenarios which involve covert means of communication that are
often used by malicious code.

This cluster has 3 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

385 | Covert Timing Channel Covert timing channels convey information by
modulating some aspect of system behavior over
time, so that the program receiving the information
can observe system behavior and infer protected

information.

514 | Covert Channel A covert channel is a path used to transfer
information in a way not intended by the system's
designers.

515 | Covert Storage Channel A covert storage channel transfers information

through the setting of bits by one program and the
reading of those bits by another. What
distinguishes this case from that of ordinary
operation is that the bits are used to convey
encoded information.

4.19 Primary Cluster: Predictability
This cluster groups weaknesses related to random number generators and their properties.

This cluster is related to the following clusters:

134

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Cryptography

4.19.1 Secondary Cluster: Predictability

There are 15 CWE:s in this cluster. All CWEs are described using non-discernible
properties.

This cluster has only one secondary cluster (no further differentiation).
This cluster has 15 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

330 | Use of Insufficiently The software may use insufficiently random
Random Values numbers or values in a security context that

depends on unpredictable numbers.

331 | Insufficient Entropy The software uses an algorithm or scheme that
produces insufficient entropy, leaving patterns or
clusters of values that are more likely to occur than
others.

332 | Insufficient Entropy in The lack of entropy available for, or used by, a

PRNG Pseudo-Random Number Generator (PRNG) can
be a stability and security threat.

333 | Improper Handling of True random number generators (TRNG) generally
Insufficient Entropy in have a limited source of entropy and therefore can
TRNG fail or block.

334 | Small Space of Random The number of possible random values is smaller
Values than needed by the product, making it more

susceptible to brute force attacks.

335 | PRNG Seed Error A Pseudo-Random Number Generator (PRNG)
uses seeds incorrectly.

336 | Same Seed in PRNG A PRNG uses the same seed each time the product
is initialized. If an attacker can guess (or knows)
the seed, then he/she may be able to determine the
"random" number produced from the PRNG.

337 | Predictable Seed in PRNG | A PRNG is initialized from a predictable seed, e.g.
using process ID or system time.

338 | Use of Cryptographically The product uses a Pseudo-Random Number

Weak PRNG Generator (PRNG) in a security context, but the
PRNG is not cryptographically strong.

135

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

339 | Small Seed Space in PRNG | A PRNG uses a relatively small space of seeds.
340 | Predictability Problems Weaknesses in this category are related to schemes
that generate numbers or identifiers that are more
predictable than required by the application.
341 | Predictable from A number or object is predictable based on
Observable State observations that the attacker can make about the
state of the system or network, such as time,
process ID, etc.
342 | Predictable Exact Value An exact value or random number can be precisely
from Previous Values predicted by observing previous values.
343 | Predictable Value Range The software's random number generator produces
from Previous Values a series of values which, when observed, can be
used to infer a relatively small range of
possibilities for the next value that could be
generated.
344 | Use of Invariant Value in The product uses a constant value, name, or
Dynamically Changing reference, but this value can (or should) vary
Context across different environments.

4.20 Primary Cluster: Ul

This cluster of weaknesses relate to security issues of User Interfaces (UI). The common
characteristics of this cluster include:

o Production computation
o Authentication
o Entry point

Through these characteristics this cluster is associated to the following clusters:

o Entry points
o Authentication
o Exception management

There are 14 CWEs in this cluster. All CWEs have insufficient white-box content.
The “UI” cluster includes the following 3 secondary clusters:

o Feature
o Information loss

136

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

o Security

4.20.1 Secondary Cluster: Feature

This cluster has 7 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

Acceptability

447 | Unimplemented or A UI function for a security feature appears to be
Unsupported Feature in Ul | supported and gives feedback to the user that
suggests that it is supported, but the underlying
functionality is not implemented.
448 | Obsolete Feature in Ul A UI function is obsolete and the product does not
warn the user.
449 | The UI Performs the The UI performs the wrong action with respect to
Wrong Action the user's request.
450 | Multiple Interpretations of | The UI has multiple interpretations of user input
UI Input but does not prompt the user when it selects the
less secure interpretation.
451 | UI Misrepresentation of The UI does not properly represent critical
Critical Information information to the user, allowing the information -
or its source - to be obscured or spoofed. This is
often a component in phishing attacks.
549 | Missing Password Field The software fails to mask passwords during entry,
Masking increasing the potential for attackers to observe
and capture passwords.
655 | Insufficient Psychological The software has a protection mechanism that is

too difficult or inconvenient to use, encouraging
non-malicious users to disable or bypass the
mechanism, whether by accident or on purpose.

4.20.2 Secondary Cluster: Information Loss

This cluster has 4 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWEs in this cluster:

221

Information Loss or
Omission

The software does not record, or improperly
records, security-relevant information that leads to
an incorrect decision or hampers later analysis.

137

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

222 | Truncation of Security- The application truncates the display, recording, or
relevant Information processing of security-relevant information in a
way that can obscure the source or nature of an
attack.
223 | Omission of Security- The application does not record or display
relevant Information information that would be important for identifying
the source or nature of an attack, or determining if
an action is safe.
224 | Obscured Security-relevant | The software records security-relevant information

Information by Alternate
Name

according to an alternate name of the affected
entity, instead of the canonical name.

4.20.3 Secondary Cluster: Security
This cluster has 3 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

356 | Product Ul does not Warn | The software's user interface does not warn the
User of Unsafe Actions user before undertaking an unsafe action on behalf
of that user. This makes it easier for attackers to
trick users into inflicting damage to their system.
357 | Insufficient UI Warning of | The user interface provides a warning to a user
Dangerous Operations regarding dangerous or sensitive operations, but
the warning is not noticeable enough to warrant
attention.
446 | Ul Discrepancy for The user interface does not correctly enable or
Security Feature configure a security feature, but the interface
provides feedback that causes the user to believe
that the feature is in a secure state.
4.21 Primary Cluster: Other

This cluster of weaknesses relates to miscellaneous architecture, design and
implementation issues. The common characteristics of this cluster include:

o Production computation

o Exception management

o Computation building blocks

138

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Through these characteristics this cluster is associated to the following clusters:

o

o

Risky computation patterns

Exception management

There are 45 CWEs in this cluster. All CWEs have insufficient white-box content.

The Other cluster includes the following 5 secondary clusters:

©)

©)

Architecture
Design
Implementation

Compiler

Suspicious syntactic constructs— this cluster covers several suspicious patterns
that may contribute to other weaknesses and are often indicators of poor code

quality

4.21.1 Secondary Cluster: Architecture
This cluster has 11 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

348 | Use of Less Trusted Source | The software has two different sources of the same
data or information, but it uses the source that has
less support for verification, is less trusted, or is
less resistant to attack.

359 | Privacy Violation Mishandling private information, such as customer
passwords or social security numbers, can
compromise user privacy and is often illegal.

602 | Client-Side Enforcement of | The software has a server that relies on the client to

Server-Side Security implement a mechanism that is intended to protect
the server.

637 | Failure to Use Economy of | The software uses a more complex mechanism

Mechanism

than necessary, which could lead to resultant
weaknesses when the mechanism is not correctly
understood, modeled, configured, implemented, or
used.

139

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

649 | Reliance on Obfuscation or | The software uses obfuscation or encryption of
Encryption of Security- inputs that should not be mutable by an external
Relevant Inputs without actor, but the software does not use integrity
Integrity Checking checks to detect if those inputs have been

modified.

654 | Reliance on a Single Factor | A protection mechanism relies exclusively, or to a
in a Security Decision large extent, on the evaluation of a single condition

or the integrity of a single object or entity in order
to make a decision about granting access to
restricted resources or functionality.

656 | Reliance on Security The software uses a protection mechanism whose
through Obscurity strength depends heavily on its obscurity, such that

knowledge of its algorithms or key data is
sufficient to defeat the mechanism.

657 | Violation of Secure Design | The product violates well-established principles for
Principles secure design.

671 | Lack of Administrator The product uses security features in a way that
Control over Security prevents the product's administrator from tailoring

security settings to reflect the environment in
which the product is being used. This introduces
resultant weaknesses or prevents it from operating
at a level of security that is desired by the
administrator.

693 | Protection Mechanism The product does not use or incorrectly uses a
Failure protection mechanism that provides sufficient

defense against directed attacks against the
product.

749 | Exposed Dangerous The software provides an Applications

Method or Function

Programming Interface (API) or similar interface
for interaction with external actors, but the
interface includes a dangerous method or function
that is not properly restricted.

4.21.2 Secondary Cluster: Design

This cluster has 28 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWE:s in this cluster:

115

Misinterpretation of Input

The software misinterprets an input, whether from
an attacker or another product, in a security-

140

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

relevant fashion.

187 | Partial Comparison The software performs a comparison that only
examines a portion of a factor before determining
whether there is a match, such as a substring,
leading to resultant weaknesses.

188 | Reliance on Data/Memory | The software makes invalid assumptions about

Layout how protocol data or memory is organized at a
lower level, resulting in unintended program
behavior.

193 | Off-by-one Error A product calculates or uses an incorrect maximum
or minimum value that is 1 more, or 1 less, than
the correct value.

349 | Acceptance of Extraneous | The software, when processing trusted data,
Untrusted Data With accepts any untrusted data that is also included
Trusted Data with the trusted data, treating the untrusted data as

if it were trusted.

405 | Asymmetric Resource Software that fails to appropriately monitor or
Consumption control resource consumption can lead to adverse
(Amplification) system performance.

406 | Insufficient Control of The software does not sufficiently monitor or
Network Message Volume | control transmitted network traffic volume, so that
(Network Amplification) an actor can cause the software to transmit more

traffic than should be allowed for that actor.

407 | Algorithmic Complexity An algorithm in a product has an inefficient worst-
case computational complexity that may be
detrimental to system performance and can be
triggered by an attacker, typically using crafted
manipulations that ensure that the worst case is
being reached.

408 | Incorrect Behavior Order: | The software allows an entity to perform a

Early Amplification legitimate but expensive operation before
authentication or authorization has taken place.

409 | Improper Handling of The software does not handle or incorrectly
Highly Compressed Data handles a compressed input with a very high
(Data Amplification) compression ratio that produces a large output.

410 | Insufficient Resource Pool | The software's resource pool is not large enough to

handle peak demand, which allows an attacker to
prevent others from accessing the resource by
using a (relatively) large number of requests for
resources.

141

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

430 | Deployment of Wrong The wrong "handler" is assigned to process an
Handler object.

462 | Duplicate Key in Duplicate keys in associative lists can lead to non-
Associative List (Alist) unique keys being mistaken for an error.

463 | Deletion of Data Structure | The accidental deletion of a data-structure sentinel
Sentinel can cause serious programming logic problems.

464 | Addition of Data Structure | The accidental addition of a data-structure sentinel
Sentinel can cause serious programming logic problems.

480 | Use of Incorrect Operator | The programmer accidentally uses the wrong
operator, which changes the application logic in
security-relevant ways.

581 | Object Model Violation: The software fails to maintain equal hashcodes for

Just One of Equals and equal objects.
Hashcode Defined
595 | Comparison of Object The program compares object references instead of
References Instead of the contents of the objects themselves, preventing
Object Contents it from detecting equivalent objects.
596 | Incorrect Semantic Object | The software does not correctly compare two
Comparison objects based on their conceptual content.
618 | Exposed Unsafe ActiveX An ActiveX control is intended for use in a web
Method browser, but it exposes dangerous methods that
perform actions that are outside of the browser's
Best Practice (e.g. the zone or domain).
648 | Incorrect Use of Privileged | The application does not conform to the API
APIs requirements for a function call that requires extra
privileges. This could allow attackers to gain
privileges by causing the function to be called
incorrectly.

670 | Always-Incorrect Control | The code contains a control flow path that does not

Flow Implementation reflect the algorithm that the path is intended to
implement, leading to incorrect behavior any time
this path is navigated.

682 | Incorrect Calculation The software performs a calculation that generates
incorrect or unintended results that are later used in
security-critical decisions or resource management.

691 | Insufficient Control Flow The code does not sufficiently manage its control

Management

flow during execution, creating conditions in
which the control flow can be modified in
unexpected ways.

142

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

696 | Incorrect Behavior Order The software performs multiple related behaviors,
but the behaviors are performed in the wrong order
in ways which may produce resultant weaknesses.

697 | Insufficient Comparison The software compares two entities in a security-
relevant context, but the comparison is insufficient,
which may lead to resultant weaknesses.

698 | Redirect Without Exit The web application sends a redirect to another
location, but instead of exiting, it executes
additional code.

705 | Incorrect Control Flow The software does not properly return control flow

Scoping to the proper location after it has completed a task
or detected an unusual condition.

483 | Incorrect Block The code does not explicitly delimit a block that is

Delimitation

intended to contain 2 or more statements, creating
a logic error.

4.21.3 Secondary Cluster: Implementation

This cluster has 5 CWEs. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWEs in this cluster:

216 | Containment Errors This tries to cover various problems in which
(Container Errors) improper data are included within a "container."
358 | Improperly Implemented The software does not implement or incorrectly
Security Check for implements one or more security-relevant checks
Standard as specified by the design of a standardized
algorithm, protocol, or technique.
398 | Indicator of Poor Code The code has features that do not directly introduce
Quality a weakness or vulnerability, but indicate that the
product has not been carefully developed or
maintained.
623 | Unsafe ActiveX Control An ActiveX control is intended for restricted use,
Marked Safe For Scripting | but it has been marked as safe-for-scripting.
710 | Coding Standards The software does not follow certain coding rules
Violation for development, which can lead to resultant

weaknesses or increase the severity of the
associated vulnerabilities.

143

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

4.21.4 Secondary Cluster: Compiler
This cluster has 1 CWE. All CWEs in the cluster are non-discernible.

The following table lists all non-discernible CWEs in this cluster:

733 | Compiler Optimization The developer builds a security-critical protection
Removal or Modification mechanism into the software but the compiler
of Security-critical Code optimizes the program such that the mechanism is
removed or modified.

144

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

APPENDIX A: Software Fault Patterns

The following table (Table 8) enumerates Software Fault Patterns (SFPs). For each, it
lists Primary Cluster that belongs to and definition.

Table 8. Software Fault Patterns

Cluster

SFP ID & Name

Software Fault Pattern Definition

Risky Values SFP1 - Glitch In

Computation

Software Fault Pattern — a weakness where
the code path has all of the following:

o an end statement that performs an
identifiable operation on data producing
some actual value of a datatype and

o the data is inappropriate to the operation
resulting in the value that is unexpected
for the datatype and the operation

Unused Entities | SFP2 - Unused

entities

Software Fault Pattern — an entity that does
not have incoming usage relationships

API

SFP3 - Use of an
improper API

Software Fault Pattern - a weakness where

the code path has all of the following:

o an end statement that performs an API
call where the call is not appropriate for
the given platform

145

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster SFP ID & Name Software Fault Pattern Definition
Exception SFP4 - Unchecked | Software Fault Pattern - a weakness where
Management status condition the code path has all of the following:

o a start statement that produces a status
condition

o an end statement that incorrectly acts on
the status condition

o where “incorrect act” is defined as exactly
one of the following:

o status condition never obtained
and used

o status condition obtained but
not used

o status incorrectly validated
such that actual and expected
status mismatch

146

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

SFP5 - Ambiguous
Exception type

Software Fault Pattern - a weakness where
the code path has all of the following:

o an end statement that requires exception

signature where the exception signature is
more general than the corresponding
exception profile

Where:

o Exception profile is the set of exceptions

thrown by a code fragment EP={el, ..., ek}

o Exception signature is the set of exceptions

declared for the try-block (in which case it
should match the exception profile of the
try-block) or at the method declaration (in
which case it should match the exception
profile of the entire method) ES={s1,...,sl}

o Exception signature (ES) is more general

than the exception profile (EP) of the
corresponding code fragment if ES
contains s which is a supertype of one or
more ei in EP

SFP6 - Incorrect
Exception
Behavior

Software Fault Pattern - a weakness where
the code path has all of the following:

o a start statement that assigns incorrect

value to status condition

o an end statement that uses incorrect value

of status condition

147

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

Memory Access

SFP7 - Faulty
pointer use

Software Fault Pattern - a weakness where
the code path has all of the following:

o an end statement that performs use of
pointer with NULL value or “out of
range” value

Where a “out of range value ” is defined as
access to memory chunk through exactly one
of the following:

o faulty address obtained as a subtraction of
two pointers to different memory chunks
or

o faulty type such as use of a pointer to
access a structure element where the
pointer was cast from a data item that is
not of a structure datatype

148

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

SFP8 - Faulty
buffer access

Software Fault Pattern - a weakness where
the code path has all of the following:

o an end statement that performs a Buffer
Access Operation and where exactly one
of the following is true:

o the access position of the
Buffer access Operation is
outside of the buffer or

o the access position of the
Buffer access Operation is
inside the buffer and the size
of the buffer is greater than the
actual size of the bufferdata
being accessed is greater than
the remaining size of the
buffer at the access position

Where the Buffer Access Operation is a
statement that performs access to a data item
of a certain size at access position. The access
position of a Buffer access Operation is
related to a certain buffer and can be either
inside the buffer or outside the buffer.

SFP9 - Faulty
string expansion

Software Fault Pattern - a weakness where
the code path has all of the following:

o a start statement that allocates a buffer

o an end statement that performs an implicit
buffer access through function call that is
characterized by buffer parameters such
as the buffer size and the expected buffer
size where the expected buffer size is
greater than the actual buffer size

149

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

SFP10 - Incorrect
buffer length
computation

Software Fault Pattern - a weakness where
the code path has all of the following:

o an end statement that performs memory
allocation for a datatype based on an
existing data item of datatype where the
computed length of the buffer is incorrect

Where incorrect length of the buffer involves
exactly one of the following:

o size of requested buffer is smaller than
needs to be

o size of requested buffer is bigger than
needs to be

SFP11 - Improper
NULL termination

Software Fault Pattern - a weakness where
the code path has all of the following:

o an end statement that passes a data item to
a null-terminated string operation where
the data item is non-null-terminated

Where the data can become non-null-

terminated in at least one of the following

ways:

o data originated from a length-based string
operation where the terminator is not
automatically added

o null-terminated string was incorrectly
transferred and the terminator was
omitted

o the null terminator has been overwritten

o array is interpreted as a string where the
null terminator is not present in the array

150

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster SFP ID & Name Software Fault Pattern Definition
Memory SFP12 - Faulty Software Fault Pattern - a weakness where
Management memory release the code path has all of the following:
o an end statement that releases memory via
a reference where the reference points to
either incorrect address or incorrect
address type
Resource SFP13 - Software Fault Pattern - a weakness where
Management Unrestricted the code path has all of the following:
consumption

o an end statement that performs resource
allocation where there is a loopback path
and the resource is not released and the
consumption limit is absent

Where “allocation control” is defined as the
condition associated with the code path that
limits the number of the allocated resource
instances.

151

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

SFP14 - Failure to
release resource

Software Fault Pattern - a weakness where
the code path has all of the following:

o a start statement performs resource
allocation

o an end statement that loses identity of the
resource and the resource is not in
released state

Where “loses identity" is defined as one of
the following:

o resource identity has not been not stored
when received

o resource identity has been obtained but
was over-written (missing beyond
recovery)

o resource identity was never passed to the
resource release function

o resource identity is stored in a data item
and the data item goes out of scope (no
more aliases remain)

o resource identity is stored in a data item
and the data item is destroyed

SFP15 - Faulty
resource use

Software Fault Pattern - a weakness where
the code path has all of the following:

o a start statement that performs release of a
resource

o an end statement that performs access to a
resource and the resource is in released
state

152

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster SFP ID & Name Software Fault Pattern Definition
Path Resolution | SFP16 - Path Software Fault Pattern - a weakness where
traversal the code path has all of the following:

o a start statement that accepts input

o an end statement that opens a file using a
file path (consisting of a directory name
and a filename) where the input is part of
the file path and the file path is insecure

Where “insecure file path” is defined as the
path of resources that are at least one of the
following:

e Resources outside of the access root

e Set of security-sensitive resources

SFP17 - Failed
chroot jail

Software Fault Pattern — a weakness where
the code path has all of the following:

o a start statement that has at least one of
the following:
o performs a chroot or

o performs a chdir,

o an end statement that opens a file where
chroot is activated and the current
working directory is outside of the chroot
jail

153

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster SFP ID & Name Software Fault Pattern Definition
SFP18 - Link in Software Fault Pattern - a weakness where
resource name the code path has all of the following:
sl o a start statement that accepts input

o an end statement that opens a file using a
file path where the file path is not link-
sanitized

o where “not link-sanitized” is defined as
exactly one of the following:

e Check for link not performed
e Check for link does not cover
every segment in the file path

Synchronization | SFP19 - Missing Software Fault Pattern - a weakness where

lock

the code path has all of the following:

o an end statement that accesses a shared
entity and the entity is improperly
synchronized

Where shared entity is one of the follows:

o resource of the particular resource type

o shared data (including static variables) of
a particular datatype

Where the “improper synchronization” is
defined as the situation where there does not
exist any lock that synchronizes the shared
entity along the given code path or when
locks are not adequate.

154

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

SFP20 - Race
condition window

Software Fault Pattern - a weakness where

the code path has all of the following:

o a start statement that checks the status of
a resource

o an end statement that performs access to
the same resource where the second
resource access occurs on the conditional
branch of start statement and the start
statement is not atomic

SFP21 - Multiple

Software Fault Pattern - a weakness where

Unrestricted lock

locks/unlocks the code path has all of the following:
o a start statement that performs call to
change resources locking state
o an end statement that performs call for the
same locking state that the resource is
already in
SFP22 - Software Fault Pattern - a weakness where

the code path has all of the following:

o an end statement that performs lock of a
resource and the resource is externally
accessible and there is no alternative flow
(the flow will be stuck if the resource
becomes locked externally)

155

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster SFP ID & Name Software Fault Pattern Definition
Information SFP23 - Exposed Software Fault Pattern - a weakness where
Leak data the code path has all of the following:

o an end statement performs moving data
where the data is sensitive and the data is
inadequately protected

Where “inadequately protected data” is
defined as exactly one of the following:
e data thatis not encrypted ((in
cleartext, in plaintext)

e data thatis not sanitized

Where “sensitive data” is defined as used in
APIs that are intended for handling sensitive
data (for example passwords).

Tainted Input SFP24 - Tainted

Input to Command

Software Fault Pattern - A weakness where
the code path has all of the following:

o a start statement that accepts input data

o an end statement that executes destination
command where the input data is part of
destination command and the input data is
undesirable

Where “input is undesirable” is defined

through the following scenarios:

o not validated

o incorrectly validated against special
characters and symbols that trigger certain
functionality during execution of
destination command (discernible) and

against applicable design specification

156

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

SFP25 - Tainted
input to variable

Software Fault Pattern - a weakness where
the code path has all of the following:

o the end statement that uses tainted data
value

Where tainted data value use is defined as
externally controlled value obtained through
at least one of the following scenarios:

o not validated user input

o not validated configuration settings

o not validated environment variables
Where tainted data value use is defined by
exactly one of the following scenarios:

-- used as a program's control variable

-- assigned to a variable

Where "user input" is defined as data
originating through a certain platform-
specific resource which is accessed using a
system call.

157

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

SFP26 - Composite
tainted input

Software Fault Pattern — is a minimal code

path which has all of the following:

@)

(@)

a start statement that accepts input data

through exactly one of the following:
o executing “input command” or

o component entry point (API that

can be invoked by platform)

an end statement that is an end statement
of another SFP that uses a data value
where the input data contributes to the

data value

the condition of the SFP of the end

statement 1s satisfied

SFP27 - Tainted
Input to
Environment

Software Fault Pattern - a weakness where
the code path has all of the following:

(@)

the end statement that calls a tainted
control element

Where tainted control element is defined by
exactly one of the following scenarios:

o loading library from untrusted source
o dynamically loading code from untrusted
source
o external function hook
158

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

Entry Points SFP28 -

Unexpected access
points

Software Fault Pattern - a weakness where
the code path has all of the following:

o statement that defines an entry point into
an application where the entry point is not
required by production code

Where “entry point that is not required by
production code” is defined as any
functionality not required by the production
code such as either:

o debug code, or
o test code or

o access to data

159

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

Authentication | SFP29 - Faulty

endpoint
authentication

Software Fault Pattern - a weakness where
the code path has all of the following:

o a start statement that performs input with
the input data

o an end statement that performs condition
check that involves data value where the
data value is a property of the input data
and the property provides insufficient
endpoint authentication

Where “property of the input data” is defined
as the result of the API calls marked in the
knowledge base as returning properties of the
input data, where the input data is passed as
the key parameter to the call. There can be
chains of such properties, for example
getRemote Addr()->getByName()-
>getCanonicalHostName(), where the first
call operates on a request and the last call
return a property of that request.

Where “property provides insufficient
endpoint authentication” is defined a property
that is marked in the knowledge base as
insufficient for authentication.

160

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

SFP30 - Missing
endpoint
authentication

Software Fault Pattern - a weakness where
the code path has all of the following:

o a start statement that performs input with
input data

o an end statement that accesses the input
data where the end statement occurs at the
region that is not guarded by endpoint
authentication conditions of the input data

Where “endpoint authentication condition of
an input data” is a condition that involves
data value that is a property of the input data.

Where “statement access input data” is
defined as an API call which is defined in the
knowledge base as accessing the input data,
and where the input data is a passed as the
key parameter to the call.

Where a “region guarded by condition” is a
code fragment that starts at the selected
branch of the condition (the branch where the
condition is considered validated).

SFP31 - Missing
authentication

Software Fault Pattern - a weakness where
the code path has all of the following:

o an end statement that performs a critical
operation where the end statement occurs
at the region that is not guarded by
authentication conditions

Where “authentication condition” is a
condition that involves a data value that is a
result of an API call that is marked in the
knowledge base as authentication call.

Where “statement performs critical
operation” is defined as an API call which is
defined in the knowledge base as performing
a critical operation (for example, a password
change).

161

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

SFP32 - Multiple
binds to the same
port

Software Fault Pattern - a weakness where
the code path has all of the following:

o an end statement that performs binding of
a socket where the socket allows multiple
bindings

Where “socket allows multiple bindings” is
defined as a specific value “bind to all
interfaces” INADD ANY or 0.0.0.0

SFP33 - Hardcoded
sensitive data

Software Fault Pattern — a weakness where
the code path has all of the following:

o a start statement that accepts sensitive
data item

o an end statement that performs
comparison where one operand is the
sensitive data item and the other operand
is a constant value

SFP34 -
Unrestricted
authentication

Software Fault Pattern - a weakness where
the code path has all of the following:

o an end statement that performs
authentication where the unvalidated
branch has a loopback path and the
authentication control is absent

Where “authentication control” is defined as
the condition associated with the code path
that limits the number of the authentication
attempts.

Where a “statement that performs
authentication” 1s an authentication condition.

162

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

Cluster

SFP ID & Name

Software Fault Pattern Definition

Access Control | SFP35 - Insecure

resource access

Software Fault Pattern - a weakness where
the code path has all of the following:

o End statement that performs a resource
access to a resource where the end
statement occurs at the region that is not
guarded by access control conditions
involving the resource

Where “access control condition involving a
resource” is a condition that involves a data
value that is a result of an API call that is
marked in the knowledge base as
authentication call, where the API call is
passed another data value that is a property of
the resource.

Where “statement performs resource access”
is defined as an API call which is defined in
the knowledge base as performing a resource
access.

Where “property of resource” is defined as
the result of the API calls marked in the
knowledge base as returning properties of the
resource, where the resource identity is
passed as the key parameter to the call. There
can be chains of such properties.

Privilege

SFP36 - Privilege

Software Fault Pattern - a weakness where
the code path has all of the following:

o start statement that performs a privileged
operation

o end statement that accesses resource
where the access is performed at elevated
privilege

Where “access at elevated privilege” is
defined by a scenario when the code path
does not contain a statement that drops
privilege.

163

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

APPENDIX B: Software Fault Patterns and
Corresponding Impacts

Refer to Table 9 for SFP and their corresponding impacts.

Table 9. Software Fault Patterns with Corresponding Impacts

SFP # | Primary SFP Impact
Cluster Description
SFP1 | Risky values Glitch in Loss of integrity of data in use;
Computation loss of integrity of service;
contributes to other SFP (condition,
buffer properties, etc.);
loss of availability of service (e.g.,
divide by zero)
SFP2 | Unused Entities | Unused entities | Indicator of poor quality
SFP3 | API Use of an Impact is described in the knowledge
Improper API base; API call is a foot-hold
SFP4 | Exception Unchecked Loss of Integrity of service;
Management status condition | contributes to other SFP
SFP5 | Exception Ambiguous Loss of Integrity of service;
Management exception type contributes to other SFP
SFP6 | Exception Incorrect Loss of Integrity of service; loss of
Management Exception availability of service; loss of
Behavior confidentiality
SFP7 | Memory Access | Faulty pointer Loss of availability of service (may
use crash); contributes to SFP4

164

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

SFP # | Primary SFP Impact
Cluster Description
SFP8 | Memory Access | Faulty buffer Loss of availability of service (write
access access); subversion of service
(especially "bulk" write access); loss of
integrity of service (write access); loss
of confidentiality (read access)
SFP9 | Memory Access | Faulty string Loss of availability of service (may
expansion crash); loss of integrity of service (may
produce incomplete results);
subversion of service
SFP10 | Memory Access | Incorrect bufer | Loss of Integrity of data in use; loss of
length Integrity of service; contributes to
calculation SFPS; contributes to SFP9
SFP11 | Memory Access | Improper NULL | Loss of availability of service (for
termination operations that write to the buffer); loss
of integrity of service (may corrupt
data); subversion of service
SFP12 | Memory Faulty memory | Loss of availability of resource
Management release (resource is not released as intended);
shutdown of service (may crash); loss
of availability of service (lockdown of
service when lock resource is
involved)
SFP13 | Resource Unrestricted Loss of availability of resource; loss of
Management consumption availability of service
SFP14 | Resource Failure to release | Loss of availability of resource; loss of
Management resource availability of service
SFP15 | Resource Faulty resource | Loss of integrity of service; loss of
Management use availability of service; loss of
availability of resource
165

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

SFP # | Primary SFP Impact
Cluster Description
SFP16 | Path resolution | Path traversal Loss of confidentiality; loss of
integrity of data at rest
SFP17 | Path resolution | Failed chroot jail | contributes to SFP16
SFP18 | Path resolution | Link in resource | contributes to SFP16
name resolution
SFP19 | Synchronization | Missing lock Loss of availability of resource; loss of
availability of service; loss of integrity
of data; loss of integrity of service;
contributes to other SFP
SFP20 | Synchronization | Race condition | Loss of availability of service; loss of
window availability of resource; loss of
integrity of service; contributes to
other SFP
SFP21 | Synchronization | Multiple locks/ | Loss of availability of service; loss of
unlocks availability of resource; loss of
integrity of service; contributes to
other SFP
SFP22 | Synchronization | Unrestricted Loss of availability of service; loss of
lock availability of resource; loss of
integrity of service
SFP23 | Information leak | Exposed data Loss of Confidentiality of data
SFP24 | Tainted Input Tainted data to subversion of service (for "code
command modification" destination commands);

loss of integrity of data (for destination
commands that modify data)

166

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

SFP # | Primary SFP Impact
Cluster Description

SFP25 | Tainted Input Tainted input to | Loss of integrity of service (distortion,

variable shutdown or lock when control
variables are modified); loss of
integrity of data

SFP26 | Tainted Input Composite no impact of its own - this is a way to
tainted data describe complex weaknesses

SFP27 | Tainted Input Tainted input to | Loss of integrity of service; loss of
environment integrity of data

SFP28 | Entry points Unexpected Loss of confidentiality; contributes to
entry point other SFPs

SFP29 | Authentication Faulty endpoint | Loss of confidentiality; contributes to
authentication other SPFs

SFP30 | Authentication | Missing Loss of confidentiality; contributes to
endpoint other SFPs
authentication

SFP31 | Authentication Missing Loss of confidentiality; contributes to
authentication other SFPs

SFP32 | Authentication Multiple binds to | Loss of confidentiality; contributes to
the same port other SFPs

SFP33 | Authentication Hardcoded Loss of confidentiality
sensitive data

SFP34 | Authentication Unrestricted Loss of availability of service
authentication

SFP35 | Access control Insecure Loss of confidentiality; loss of
resource access | integrity of data;

SFP36 | Privilege Privilege Contributes to other SFPs

167

Distribution authorized to U.S. Government Agencies and their contractors.
Data subject to restrictions on the cover and notice page.

List of Acronyms, Abbreviations, and Symbols

ACRONYM DEFINITION

AFRL Air Force Research Laboratory

API Application Programming Interface

CIO Chief Information Officer

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DoD Department of Defense

EISTS Embedded Information Systems Technology Support
KDM Knowledge Discovery Metamodel (OMG Specification)
NII Network and Information Integration

NIST National Institute of Standards and Technology
OASD Office of the Assistant Secretary of Defense

OMG Object Management Group Consortium

SBVR Semantic Business Vocabulary and Rules (OMG Spec.)
SFP Software Fault Pattern

SOW Supplier Statement of Work

SwA Software Assurance

TCG Test Case Generator

TIC Tainted Input to Command

TIE Tainted Input to Environment

TIV Tainted Input to Variable

VPAD Vulnerability Path Analysis and Demonstration

WK Weakness Kernel

XMI XML Metadata Interchange

168

Distribution authorized to U.S. Government Agencies and their contractors.

Data subject to restrictions on the cover and notice page.

DEPARTMENT OF THE AIR FORCE
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE OHIO 45433

21 March 2013

MEMORANDUM FOR: Defense Technical Information Center/OCA
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218

FROM: RY STINFO Tech Editing Office
AFRL/RYOX (STINFO)
2241 Avionics Circle
Bldg 620, Room 2AL 48
Wright-Patterson AFB, OH 45433-7320

SUBJECT: Notice of Change for Technical Report

1. Reference: (U) Embedded Information Systems Technology Support (EISTS). Task
Order 0006: Vulnerability Path Analysis and Demonstration (VPAD). Volume 2 - White
Box Definitions of Software Fault Patterns, ADB381215.

e Change distribution statement from C to A.

e PAO Case Number: 88ABW-2013-1292, cleared March 15, 2013.

2. Please call me at DSN 798-8489 if more information is needed.

3. Thank you for your attention to this matter.

M ITC H E L L. LO L I BIZ%E?:E’LTE”?T.?T?\YVJ262526573 - -
A V. 1262526573 oisnsas e ooy 27
LOLITA V. MITCHELL

STINFO Officer

